A Review of the Impact of Bush Burning on the Environment: Potential Effects on Soil Chemical Attributes
DOI:
https://doi.org/10.51601/ijse.v3i3.79Abstract
Bush burning, whether the result of a wildfire or a controlled burn, has been shown to affect not only the appearance of the landscape, but the quality of the soil as well. Uncontrolled bush fires impact the soil in a variety of ways with the magnitude of the disturbance largely dependent upon the fire intensity, duration and recurrence, fuel load, and soil characteristics. The impact on soil properties is intricate, yielding different results based on these factors. Whereas burning off the vegetation during land clearing for cultivation is a common farming practice among farmers in many parts of the tropics, yet little is known by perpetrators of this practice about its impacts on the soil and its dwellers. This paper reviews research findings from a number of works conducted across the globe with the aim of gaining an insight the effects of wildfire and prescribed fire on the soil chemical and biological attributes. The knowledge of soils response in terms of these two properties to fire events can help in proper implementation of rehabilitation and restoration strategies at the short term, medium term, and long term.
Downloads
References
Addo-Fordjour, P., Kadan, F. Rahmad, Z. B. Fosu, D. and Ofosu-Bamfo, B. 2020. Wildfires cause shifts in liana community structure and liana-soil relationships in a moist semi-deciduous forest in Ghana. Folia Geobot., 55: 1-15
Agbeshie, A. A.,• Abugre, S. • Darkwa, T. A. and •Awuah, R. 2022. A review of the effects of forest fire on soil properties. J. For. Res. 33:1419–1441 https://doi.org/10.1007/s11676-022-01475-4
Akburak, S., Son, Y. Makineci, E. and Çakir, M. 2018. Impacts of lowintensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto Forest. J. for Res., 29(3): 687–696
Alcañiz, M., Outeiro, L. Francos, M. Farguell, J. and Úbeda, X. 2016. Longterm dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ., 572: 1329–1335
Alcañiz, M., Outeiro, L. Francos, M. and Úbeda, X. 2018. Effects of prescribed fires on soil properties: a review. Sci. Total Environ., 613: 944–957
Allam, A., Borsali, A. H. Kefifa, A. Zouidi, M. and Gros, A. (2020). Effect of fires on certain properties of forest soils in Western Algeria. Acta. Technol. Agric., 23: 111–117
Amoako, E. E. and Gambiza, J. 2019. Effects of anthropogenic fires on some soil properties and the implications of fire frequency for the Guinea savanna ecological zone, Ghana. Scientific African, 6: Available at: http://creativecommons.org/licenses/by/4.0/
Armas-Herrera, C. M., Martí, C. Badía, D. Ortiz-Perpiñá, O. Girona- García, A. and Mora, J. L. 2018. Short-term and midterm evolution of topsoil organic matter and biological properties after pre- scribed burning for pasture recovery (Tella, Central Pyre- nees, Spain). Land Degrad. Dev., 29: 1545–1554.
Assefa, K. 1978. Effects of humus on water retention capacity of the soil and its role in fight against desertification. M. Sc. Thesis. Department of Environmental Science, Helsinki University.
Auclerc, A., Le Moine, J. M. Hatton, P. J. Bird, J. A. and Nadelhoffer, K. J. 2019. Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Sci. Total Environ. 647:1058-1068
Badía, D., Martí, C. Aguirre, A. J. Aznar, J. M. González-Pérez, J. A. De la Rosa, J. M. León, J. Ibarra, P. and Echeverría, T. 2014. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: changes at cm-scale topsoil. CATENA 113: 267–275
Barreiro, A., Bååth, E. and Díaz-Raviña, M. 2016. Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials. Soil Biol. Biochem., 97: 102-111.
Barreiro, A., Lombao, A. Martín, A. Cancelo-González, J. Carballas, T. and Díaz-Raviña, M. 2020. Soil heating at high temperatures and different water content: effects on the soil microorganisms. Geosci., 10: 1-17
Barreiro, A. and Díaz-Raviña, M. 2021. Fire impacts on soil microorganisms: Mass, activity, and diversity. Environmental Sci. & Health., 22:100264 Available at: www.sciencedirect.com
Beck, J. L., Cale, J. A. Rodriguez-Ramos, J. C. Kanekar, S. S. Karst, J. Cahill, J. F. Simard, S. W. and Erbilgin, N. 2020. Changes in soil fungal com- munities following anthropogenic disturbance are linked to decreased lodgepole pine seedling performance. J. Appl. Ecol., 57: 1292-1302
Bennett, L. T., Aponte, C. Baker, T. G. and Tolhurst, K. G. 2014. Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. For. Ecol. Manage. 328: 219–228
Borgogni, F., Lavecchia, A. Mastrolonardo, G. Certini, G. Ceccherini, M. T. Pietramellara, G. 2019. Immediate- and short-term wildfire impact on soil microbial diversity and activity in a Mediterranean forest soil. Soil Sci., 184: 35–42
Brown, S. P., Veach, A. M. Horton, J. L. Ford, E. Jumpponen, A. and Baird, R. 2019. Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appa- lachian Mountains. For. Ecol. Manag., 451: 117520
Callaham, Jr. M. A., Blair, J. M. Todd, T. C. Kitchen, D. J. and Whiles, M. R. 2003. Macroinvertebrates in North American tallgrass prairie soils: Effects of fire, mowing, and fertilization on density and biomass. Soil Biology and Biochemistry, 35(8): 1079-1093
Caon, L., Vallejo, V. R. Ritsema, C. J. and Geissen, V. 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Sci Rev 139: 47–58
Carson, C. M. and Zeglin, L. H. 2018. Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biol. Biochem., 121: 231-239
Castaño, C., Hernández-Rodríguez, M. Geml, J. Eberhart, J. Olaizola, J. Oria-de-Rueda, J. A. and Martín-Pinto, P. 2020. Resistance of the soil fungal communities to medium-intensity fire prevention treatments in a Mediterranean scrubland. For. Ecol. Manag., 472:118217.
Cavard, X., Bergeron, Y. Paré, D. Nilsson, M. C. and Wardle, D. A. 2019. Disentangling effects of time since fire, overstory composition and organic layer thickness on nutrient availability in Canadian boreal forest. Ecosystems, 22(1):33–48
Chungu, D., Ng’andwe, P. Mubanga, H. and Chileshe, F. 2020. Fire alters the availability of soil nutrients and accelerates growth of Eucalyptus grandis in Zambia. J for Res 31(5): 1637–1645
Certini, G. 2005. Effect of fire on properties of soil - A review. Oecologia, 143: 1-10.
Certini, G., Nocentini, C. Knicker, H. Arfaioli, P. and Rumpel, C. 2011. Wildfre effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma, 167:148–155
Certini, G., Moya, D. Lucas-Borja, M. E. and Mastrolonardo, G. 2021. The impact of fire on soil-dwelling biota: A review. Forest Ecology and Management, 488, 118989
Coleman, T. W. and Rieske, L. K. 2006. Arthropod response to prescription burning at the soil–litter interface in oak–pine forests. Forest Ecology and Management, 233 (2006) 52–60
Clark, B. 2001. Soils, water, and watersheds. In: Fire Effects Guide. National Interagency Fire Center, USA
Day, N. J., Dunfield, K. E. Johnstone, J. F. Mack, M. C. Turetsky, M. R. Walker, X. J. White, A. L. and Baltzer, J. L. 2019. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Global Change Biol., 25: 2310–2324
DeBano, L. F. 1989. Effects of fire on chaparral soils in Arizona and California and postfire management implications. In: Berg, N., ed. Fire and watershed management: symposium proceedings; 1988 October 16-28; Sacramento, CA. Gen. Tech. Rep. PSW-109. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: 55-62.
DeBano, L. F. 1990. The Effect of Fire on Soil Properties. Paper presented at the Symposium on Management and Productivity of Western-Montane Forest Soils, Boise, ID, April 10-12, 1990.
DeBano, L. F. and Klopatek, J. M. 1988. Phosphorus dynamics of pinyon-juniper soils following simulated burning. Soil Science Society of America Journal. 52: 271-277
De Rouw, A. 1994. Effect of fire on soil, rice, weeds and forest regrowth in a rain forest zone (Cote d’Ivoire). Catena, 22 (3): 133-152
Díaz-Raviña, M., Lombao, V. A, Barreiro, B. A. I. Martín, J. A. and Carballas, F. T. 2018. Medium-term impact of post-fire emergency rehabilitation techniques on a shrubland ecosystem in Galicia (NW Spain). Span. J. Soil Sci., 8: 322-346
Doerr, S., Woods, S. and Martin, D. 2009. Natural background’ soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence. Journal of Hydrology, 371(1-4): 12-21.
Downing, T. A., Imo, M. Kimanzi, J. and Otinga, A. N. 2017. Effects of wildland fire on the tropical alpine moorlands of Mount Kenya. CATENA., 149: 300–308.
Dunn, P. H., Barro, S. C. and Poth, M. 1985. Soil moisture affects survival of microorganisms in heated chaparral soil. Soil Biology and Biochemistry. 17: 143-148.
Dromoi, F. and Wimberly, M. 2017. Fire regimes and their drivers in the Upper Guinean Region of West Africa, Remote Sensing 9 (11) 1117 https: //doi.org/10.3390/rs9111117. [23] P.M. Fernandes, G.M.M. Davies
Dzwonko, Z., Loster, S. and Gawroński, S. 2015. Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. For. Ecol. Manage., 342:56–63.
Edem, ID; Alphonsus, DU 2013. Soil properties dynamics induced by passage of fire during agricultural burning. International of Advance Agricultural Research, 5(1): 43-52
Fairbanks, D., Shepard, C. Murphy, M. Rasmussen, C. Chorover, J. Rich, V. and Gallery, R. 2020. Depth and topographic controls on micro bial activity in a recently burned sub-alpine catchment. Soil Biol Biochem., 148: 107844
Fernandez, I., Cabaneiro, A. and Carballas, T. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29(1): 1-11
Fernández-Fernández, M., Gómez-Rey, M. X. and González-Prieto, S. J. 2015. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years. Sci. Total. Environ., 515: 92–100
Fernández-García, V., Marcos, E. Fernández-Guisuraga, J. M. Taboada, A. Suárez-Seoane, S. and Calvo, L. 2019a. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. Int. J. Wildland Fire, 28(5):354–364
Fernández-García, V., Miesel, J. Baeza, M. J. Marcos, E. and Calvo, L 2019b. Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire. Appl. Soil Ecol. 135:147–156
Fernández-García, V., Marcos, E. Reyes, O. and Calvo, L. 2020. Do fire regime attributes affect soil biochemical properties in the same way under different environmental conditions? Forests, 11: 274
Fernández-García, V., Marcos, E. Huerta, S. and Calvo, L. 2021. Soil-vegetation relationships in Mediterranean forests after fire. For Ecosyst., 8(1): 1–13
Francos, M., Stefanuto, E. B. Úbeda, X. and Pereira, P. 2019. Long-term impact of prescribed fire on soil chemical properties in a wildland-urban interface. Northeastern Iberian Peninsula. Sci. Total Environ., 689: 305–311
Francos, M. and Úbeda, X. 2021. Prescribed fire management. Curr. Opin Environ. Sci. Health, 21:100250
Fultz, L. M., Moore-Kucera, J. Dathe, J. Davinic, M. Perry, G. Wester, D. Schwilk, D. W. and Rideout-Hanzak, S. 2016. Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: two case studies in the semi-arid Southwest. Appl. Soil Ecol. 99: 118–128
Gao, C., He, J. Cong, J. Zhang, S. and Wang, G. 2018. Impact of forest fires generated black carbon deposition fluxes in Great Hinggan Mountains (China). Land Degrad. Dev., 29(7): 2073-2081.
Girona-García, A., Badía-Villas, D. Martí-Dalmau, C. Ortiz-Perpiñá, O. Mora, J. L. and ArmasHerrera, C. M. 2018. Effects of prescribed fire for pasture management on soil organic matter and biological properties: a 1-year study case in the Central Pyrenees. Sci. Total Environ. 618:1079–1087. https://doi.org/10.1016/j. scitotenv.2017.09.127
Goberna, M., García, C. Insam, H. Hernández, M. T. and Verdú, M. 2012. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microb. Ecol., 64(1): 242–255
Gonza ́lez-Pe ́rez, J. A., Gonza ́lez-Vila, F. J. and Almendros, G. 2004. The effect of fire on soil organic matter- A review. Environment International, 30: 855– 870.
Granged, A. J., Zavala, L. M. Jordán, A. and Bárcenas-Moreno, G. 2011. Postfire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma., 164(1–2): 85–94
Hart, B. T. N., Smith, J. E. Luoma, D. L. and Hatten, J. A. 2018. Recovery of ecto- mycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag., 422: 11-22
Harvey, A. E., Jurgensen, M. F. Larsen, M. J. and Graham, R. T. 1987. Decaying organic materials and soil quality in the Inland Northwest: a management opportunity. Gen. Tech. Rep. INT-225. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 15 p.
Heydari, M., Rostamy, A. Najafi, F. and Dey, D. C. 2017. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J. for Res., 28(1): 95–104
Hiers, J. K., O’Brien, J. J. Varner, J. M. Butler, B. W. Dickinson, M. Furman, J. Gallagher, M. Godwin, D. Goodrick, S. L. Hood, S. M. and Hudak, A. 2020. Prescribed fire science: the case for a refined research agenda. Fire Ecol. 16(1):1–15.
Holden, S. R. and Treseder, K. K. 2013. A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol., 4: 1–17. https://doi.org/10.33 89/fmicb.2013.00163
Hosking, J. S. 1938. The ignition at low temperatures of the organic matter in soils. Journal of Agricultural Science, 28: 393-400.
Hosseini, M., Geissen, V. González-Pelayo, O. Serpa, D. Machado, A. I. Ritsema, C. and Keizer, J. J. 2017. Effects of fire occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma., 289: 97–106
Hu, M., Song, J. Li, S. Li, Z. Hao, Y. Di, M. and Wan, S. 2020. Understanding the effects of fire and nitrogen addition on soil respiration of a field study by combining observations with a meta-analysis. Agric. for Meteorol., 292: 108106
Huffman, M. S. and Madritch, M. D. 2018. Soil microbial response following wildfires in thermic oak-pine forests. Biol Fertil Soils, 54: 985–997
Ibáñez, T. S., Wardle, D. A. Gundale, M. J. and Nilsson, M.C. 2021. Effects of soil abiotic and biotic factors on tree seedling regeneration following a Boreal forest wildfire. Ecosystems., 2021: 1–17.
Ibitoye, R., Oyedele, D. J. Tijani, F. O. and Akinde, B. 2019. Effect of bush burning Intensity on selected soil physical and chemical properties in Ile-Ife, Nigeria. Moor Journal of Agricultural Research, 20(2): 20-35.
Inbar, A., Lado, M. Sternberg, M. Tenau, H. and Ben-Hur, M. 2014. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221: 131–138.
James, S. W. 1995. Systematics, biogeography, and ecology of Nearctic earthworms from eastern, central, southern, and southwestern United States. Pages. 29-52 in Hendrix PF, ed. Earthworm Ecology and Biogeography in North America. Boca Raton (FL): Lewis Publishers.
James, J. A., Kern, C. C. and Miesel, J. R. 2018. Legacy effects of prescribed fire season and frequency on soil properties in a Pinus resinosa forest in northern Minnesota. For. Ecol. Manag., 415: 47–57.
Johnson, D. W. 1992. Effects of forest management on soil carbon storage. Water, Air, and Soil Pollution, 64: 83-120.
Johnston, M. D. and Barati, M. 2013. Calcium and titanium as impurity getter metals in purification of silicon. Sep Purif Technol., 107:129–134.
Johnson, D. W., Walker, R. F. Glass, D. W. Stein, C. M. Murphy, J. B. Blank, R. R. and Miller, W. W. 2014. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest. For. Sci., 60(1): 170–179.
Jonathan, R., Dorrepaal, E. Kardol, P. Nilsson, M. C. Teuber, L. M. and Wardle, D. A. 2016. Contrasting responses of soil microbial and nematode communities to warming and plant functional group removal across a post-fire boreal forest successional gradient. Ecosystems., 19(2): 339–355
Kalisz, P. J. and Powel, J. E. 2000. Effects of prescribed fire on soil invertebrates in upland forests on the Cumberland Plateau of Kentucky, USA. Natural Areas Journal, 20(4): 336-341
Kang, J. W. and Park, Y. D. 2019. Effects of deforestation on microbial di- versity in a Siberian larch (Larix sibirica) stand in Mongolia. J. Forestry Res., 30: 1885-1893
Kauffman, J. D., Cummings, D. W. and Babbitt, R. 1995. Fire in the Brazilian Amazon: I. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 104:397–408
Kazeev, K. S., OdabashiaN, M. Y. Trushkov, A. V. and Kolesnikov, S. I. 2020. Assessment of the influence of pyrogenic factors on the biological properties of Chernozems. Eurasian Soil Sci., 53: 1610-1619
Knelman, J. E., Graham, E. B. Trahan, N. A. Schmidt, S. K. and Nemergut, D. R. 2015. Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondKaliary succession of a burned forest. Soil Biol. Biochem., 90: 161–168
Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85(1): 91–118
Lehmann, C. E. R., Archibald, S. A. Hoffmann, W. A. and Bond, W. J. 2011. Deciphering the distribution of the savanna biome, New Phytologist, 191(1): 197–209 https://doi.org/10.1111/j.1469-8137.2011.03689.x
Liu, J., Qiu, L. Wang, X. Wei, X. Gao, H. Zhang, Y. and Cheng, J. 2018. Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant and Soil 428(1): 123–136.
Lombao, A., Barreiro, A. Fontúrbel, M. T. Martín, A. Carballas, T. and Díaz-Raviña, M. 2020. Key factors controlling microbial community responses after a fire: importance of severity and recurrence. Sci. Total Environ., 741: 140363
Lucas-Borja, M. E., Miralles, I. Ortega, R. Plaza-Álvarez, P. A. Gonzalez-Romero, J. Sagra, J. Soriano-Rodríguez, M. Certini, G. Moya, D. and Heras, J. 2019. Immediate fireinduced changes in soil microbial community composition in an outdoor experimental controlled system. Sci Total Environ 696:134033. https://doi. org/10.1016/j.scitotenv.2019.134033
Lucas-Borja, M. E., Ortega, R. Miralles, I. Plaza-Álvarez, P. A. GonzálezRomero, J. Peña-Molina, E. Moya, D. Zema, D. A. Wagenbrenner, J. W. and De las Heras, J. 2020. Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis Mill. forests Eur. J. for Res., 139: 935–945.
Lussenhop, J. 1976. Soil arthropod response to prairie burning. Ecology, 57: 88-98.
Maass, J. 1995. Conversion of tropical dry forest to pasture and agriculture. In S.H. Bullock, H.A. Mooney, and E. Medina. Cambridge Univ. Press, Cam-bridge, p. 399–422.
Mabuhay, J. A., Nakagoshi, N. and Horikoshi, T. 2003. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res., 18(4): 431–441. https://doi. org/10.1046/j.1440-1703.2003.00567.x
Manral, V., Bargali, K. Bargali, S. S. and Shahi, C. 2020. Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecol. Process., 9:30. https://doi.org/10.1186/s13717-020-00235-8
Mataix-Solera, J., Guerrero, C. García-Orenes, F. Bárcenas, G. and Torres, M. 2009. Forest fire effects on soil microbiology. In: Cerdà A, Robichaud P. eds. Fire effects on soils and restoration strategies. Science Publishers, Inc, Enfield. pp. 133–175. https://doi.org/10.1201/9781439843338-c5
Maynard, D. G., Paré, D. Thiffault, E. Lafleur, B. Hogg, K. E. and Kishchuk, B. 2014. How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ. Rev., 22(2): 161–178.
Meira-Castro, A., Shakesby, R. A. Marques, J. E. Doerr, S. H. Meixedo, J. P. Teixeira, J. and Chaminé, H. I. 2015. Effects of prescribed fire on surface soil in a Pinus pinaster plantation, northern Portugal. Environ. Earth Sci., 73(6): 3011–3018
Miesel, J. R., Hockaday, W. C. Kolka, R. K. and Townsend, P. A. 2015. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region. J. Geophys. Res., 120(6): 1124-1141.
Moya, D., González-De Vega, S. Lozano, E. García-Orenes, F. MataixSolera, J. Lucas-Borja, M. E. and de Las, H. J. 2019. The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after wildfire. J. Environ. Manag, 235: 250–256
Moya, D., Fontúrbel, M. T. Lucas-Borja, M. E. Peña, E. Alfaro-Sanchez, R. Plaza-Álvarez, P. A. González-Romero, J. and de Las Heras, J. 2021. Burning season and vegetation coverage influenced the community-level physiological profile of Mediterranean mixed-mesogean pine forest soils. J. Environ. Manag., 277: 111405.
Muqaddas B, Zhou X, Lewis T, Wild C, Chen, C. 2015. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Sci. Total Environ., 536: 39–47.
Nave, L. E., Vance, E. D. Swanston, C. W. and Curtis, P. S. 2011. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21(4): 1189-1201.
Neff, J., Harden, J. and Gleixner, G. 2005. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Canadian Journal of Forest Research, 35: 2178-2187
Numbere, A. and Obanye, C. 2023. Environmental Impact of Bush Burning on the Physico-Chemistry of Mangrove Soil at Eagle Island, Niger Delta, Nigeria. American Journal of Plant Sciences, 14, 191-201. doi: 10.4236/ajps.2023.142015.
O’Brien, J. J., Hiers, J. K. Varner, J. M. Hoffman, C. M. Dickinson, M. B. Michaletz, S. T. Loudermilk, E. L. and Butler, B. W. 2018. Advances in mechanistic approaches to quantifying biophysical fire effects. Curr. for Rep. 4(4): 161–177
Olejniczak, I., Górska, E. B. Prędecka, A. Hewelke, E. Gozdowski, D. Korc, M. Panek, E. Tyburski, Ł. Skawin´ska, M. Oktaba, I. Boniecki, P. Kondras, M. and Oktaba, L. 2019. Selected biological prop- erties of the soil in a burnt-out area under old pine trees three years after an fire. Rocznik Ochrona Srodowiska., 21: 1279–1293
Otitoju, O., Yakubu, O. E. Otitoju, G. T. O. and Daniel, U. 2019. A review of impact of recurrent bush burning on the climate change paradigm: The Nigerian experience. International Journal of Biology Research, 4(4): 92-101
Pereg, L., Mataix-Solera, J. McMillan, M. and García-Orenes, F. 2018. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil. Sci. Total Environ., 619–620: 1079-1087.
Pellegrini, A. F., Caprio, A. C. Georgiou, K. Finnegan, C. Hobbie, S. E. Hatten, J. A. and Jackson, R. B. 2021. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Global Change Biol., 27(16): 3810–3823
Pérez-Izquierdo, L., Zabal-Aguirre, M. Verdú, M. Buée, M. and Rincón, A. 2020. Ectomycorrhizal fungal diversity decreases in Mediterranean pine forests adapted to recurrent fires. Mol. Ecol., 29: 2463–2476.
Pérez-Izquierdo, L., Clemmensen, K. E. Strengbom, J. Granath, G. Wardle, D. A. Nilsson, M. C. and Lindahl, B. D. 2021. Crown-fire severity is more important than ground-fire severity in determining soil fungal community development in the boreal forest. J. Ecol., 109(1): 504–518
Qin, Q. and Liu, Y. 2021. Changes in microbial communities at different soil depths through the first rainy season following severe wildfire in North China artificial Pinus tabulaeformis forest. J. Environ. Manag., 280: 111865
Raison, R. J. Khanna, P. K. and Woods, P. V. 1985. Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15: 132-140.
Raison, R. J., Woods, P. V. Jakobsen, B. F. and Bary, G. A. 1986. Soil temperatures during and following low-intensity prescribed burning in a Eucalyptus pauciflora forest. Soil Res 24(1): 33–47.
Rashid, A., Ahmed, T. and Ayub, N. 1997. Effect of forest fire on number, viability and post-fire reestablishment of arbuscular mycorrhizae. Mycorrhiza, 7: 217-220
Rice, P. 1987. Pottery Analysis. A source book. The University of Chicago Press.
Robichaud, P. and Hungerford, R. 2000. Water repellency by laboratory burning of four northern. Journal of Hydrology, 231-232: 207-219.
Rodríguez, J. González-Pérez, J. A. Turmero, A. Hernández, M. Ball, A. S. González-Vila, F. J. and Arias, M. E. 2018. Physico-chemical and microbial perturbations of Andalusian pine forest soils following a wildfire. Sci. Total Environ. 634: 650–660.
Rodriguez-Cardona, B. M., Coble, A. A. Wymore, A. S. Kolosov, R. Podgorski, D. C. Zito, P. Spencer, R. G. Prokushkin, A. S. and McDowell, W. H. 2020. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Sci. Rep. 10(1): 1-9
Romeo, F., Marziliano, P. A. Turrión, M. B. and Muscolo, A. 2020. Short-term effects of different fire severities on soil properties and Pinus halepensis regeneration. J. for. Res., 31(4): 1271–1282
Sáenz de Miera, L. E., Pinto, R. Gutierrez-Gonzalez, J. J. Calvo, L. and Ansola, G. 2020. Wildfire effects on diversity and composition in soil bacterial communities. Sci. Total Environ., 726: 138636
Salim, I. S. H., Reis, A. F. S. and Walker, C. A. D et al. 2022. Fire shifts the soil fertility and the vegetation composition in a natural high-altitude grassland in Brazil. Environmental Challenges, 9: 1-10
Semenenko, S. Y., Morozova, N. V. and Marchenko, S. S. 2020. Studies of the effects of pyrogenic exposure on the enzymatic activity of chestnut and Chernozem soils. Arid Ecosystems, 10: 384–389
Santín, C. and Doerr, S. H. 2016. Fire effects on soils: the human dimension. Philos. Trans. R. Soc. B. 371(1696): 20150171
Sánchez M. A., Springer, J. D. Huffman, D. W. Bowker, M. A. and Crouse, J. E. 2017. Soil functional responses to ecological restoration treatments in frequent-fire forests of the western United States: a systematic review. Restor Ecol., 25(4): 497-508
Santín, C., Otero, X. L. Doerr, S. H. and Chafer, C. J. 2018. Impact of a moderate/ high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Sci. Total Environ., 621: 1103-1114
Scharenbroch, B. C., Nix, B. Jacobs, K. A. and Bowles, M. L. 2012. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma., 183: 80–91
Sgardelis, S. P. and Magaris, N. S. 1993. Effects of fire on soil microarthropods of a phrygana ecosystem. Pedobiologia, 37: 83-94
Singh, D., Sharma, P. Kumar, U. Daverey, A. and Arunachalam, K. 2021. Effect of forest fire on soil microbial biomass and enzymatic activity in oak and pine forests of Uttarakhand Himalaya, India. Ecological Processes 9: 100638. Available at: https://doi.org/10.1186/s13717-021-00293-6
Singh, D., Dhiman, S. K. Kumar, V. Babu, R. Shree, K. Priyadarshani, A. Singh, A. Shakya, L. Nautiyal, A. and Saluja, S. 2022. Crop Residue Burning and Its Relationship between Health, Agriculture Value Addition, and Regional Finance. Atmosphere 2022, 13(9), 1405; https://doi.org/10.3390/atmos13091405
Smith, N. R., Kishchuk, B. E. and Mohn, W. W. 2008. Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl. Environ. Microbiol., 74(1): 216–224. https://doi.org/10.1128/AEM.01355-07
Stendell, E. R., Horton, T. R. and Bruns, T. D. 1999. Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research, 103(10): 1353-1359
Strand, M. 2011. Where do classifications come from? The DSM-III, the transformation of American psychiatry, and the problem of origins in the sociology of knowledge. Theor. Soc. 40: 273–313. https://doi.org/10.1007/s111 86-011-9142-8
SSSA. 2001. Glossary of Soil Science Terms. Soil Science Society of America. Madison, USA.
St. John, Theodore, V. Rundel, and Philip, W. 1976. The role of fire as a mineralizing agent in a Sierran coniferous forest. Oecologia., 25: 35-45
Swengel, A. B. 2001. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodiversity and Conservation, 10: 1141–1169
Switzer, J. M., Hope, G. D. Grayston, S. J. and Prescott, C. E. 2012. Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. For. Ecol. Manag., 275: 1–13
Tadesse, K. A. 2016. A Review on Effects of Fire and Traditional Practices of Soil Burning on Soil Physico-Chemical Properties. Journal of Biology, Agriculture and Healthcare, 6(1): 78-83
Taudière, A., Richard, F. and Carcaillet, C. 2017. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag, 391: 446–457
Thomas, J. L., Polashenski, C. M. Soja, A. J. Marelle, L. Casey, K. A. Choi, H. D. Raut, J. C. Wiedinmyer, C. Emmons, L. K. Fast, J. D. and Pelon, J. 2017. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett., 44(15): 7965–7974.
Tiedemann, A. R. 1987. Combustion losses of sulfur and forest foliage and litter. Forest Science, 33: 216-223.
Ubuoh, E. A., Ejekwolu, C. C. and Onuigbo, I. V. 2017. The Effect of Burnt and Un-burnt Land on Soil Physicochemical Characteristics in Ekeya-Okobo Local Government Area, Akwa Ibom State, Nigeria. J. Appl. Sci. Environ. Manage., 21(5): 923-929
Valkó, O., Deák, B. Magura, T. Török, P. Kelemen, A. Tóth, K. Horváth, R. Nagy, D. D. Debnár, Z. Zsigrai, G. and Kapocsi, I. 2016. Supporting biodiversity by prescribed burning in grasslands—a multi-taxa approach. Sci. Total Environ., 572: 1377–1384
Verma, S. and Jayakumar, S. 2012. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3):168-176
Verma, S., Singh, D. Singh, A. K. and Jayakumar, S. 2019. Post-fire soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats. India for Ecosyst., 6(1): 1–9
Wang, Y., Liu, X. Yan, Q. and Hu, Y. 2019. Impacts of slash burning on soil carbon pools vary with slope position in a pine plantation in subtropical China. Catena, 183: 104212
Wang, Y., Zheng, J. Liu, X. Yan, Q. and Hu, Y. 2020. Short-term impact of fire- deposited charcoal on soil microbial community abundance and composition in a subtropical plantation in China. Geoderma, 359: 113992.
Wardle, D. A., Nilsson, M. C. and Zackrisson, O. 2008. Fire-derived charcoal causes loss of forest humus. Science, 320-629
Wasis, B., Saharjo, B. H. and Putra, E. I. 2019. Impacts of peat fire on soil flora and fauna, soil properties and environmental damage in riau province, Indonesia. Biodiversitas, 6: 770–1775
Zhang, Y. and Biswas, A. 2017. The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: a review. Adapt Soil Manag, : 465–476
Zhang, G., Yu, X. Li, Y. Liu, Y. Zhang, H. Jia, Y. and Xia, S. 2019. Effects of burning on carbon utilization of soil microorganisms and plant growth of Carex brevicuspis communities at Lake Poyang Wetlands, China. Wetlands, 39: S1–S15
Zhou, Z., Wang, C. Luo, Y. 2018. Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography, 27, 1121–1136
Zhou, X., Sun, H. Pumpanen, J. Sietiö, O. M. Heinonsalo, J. Köster, K. and Berninger, F. 2019. The impact of wildfire on microbial C:N:P stoi- chiometry and the fungal-to-bacterial ratio in permafrost soil. Bio., 142: 1–17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alhaji Maigana Chiroma, Abdullahi Bala Alhassan
This work is licensed under a Creative Commons Attribution 4.0 International License.