The Influence Of Rainfall Classification On Bias Correction Of Satellite Precipitation Products Power Merra-2, Gsmap, And Persiann-Ccs
DOI:
https://doi.org/10.51601/ijse.v6i1.327Abstract
This study evaluates the effectiveness of six bias correction methods, namely Linear Scaling, Delta, second- and third-order Polynomial, Quantile Mapping, and Hybrid Polynomial–Quantile Mapping, in improving satellite-based precipitation estimates and assessing the performance of three satellite rainfall products through validation and verification processes. In addition, the influence of rainfall classification on validation results is examined. Model performance is evaluated using the correlation coefficient, percent bias (PBIAS), Nash–Sutcliffe efficiency (NSE), and the ratio of RMSE to standard deviation (RSR). The results indicate that PERSIANN-CCS, despite having the smallest grid size and the highest spatial resolution, exhibits greater rainfall variability and lower agreement with rain gauge observations, particularly during extreme and minimum rainfall events. In contrast, GSMaP and Power MERRA-2 demonstrate rainfall patterns that are more consistent with observed data. Rainfall classification shows that the calibration dataset consists of 60% normal years and 40% wet years, with no dry years, while the verification dataset does not include wet-year conditions. Based on the calibration and validation results, Power MERRA-2 corrected using the third-order polynomial method provides the best performance at daily, monthly, and annual timescales. Verification results indicate satisfactory performance at monthly and annual scales, as well as improved daily-scale performance under normal-year verification scenarios, supported by cumulative distribution function (CDF) analysis
Downloads
References
[1] Kementerian Pekerjaan Umum dan Perumahan Rakyat, Data Hujan dan Tinggi Muka Air Sungai, Kupang: Balai Besar Wilayah Sungai Nusa Tenggara II, 2025.
[2] Kementerian Pekerjaan Umum dan Perumahan Rakyat, “Progres pembangunan Bendungan Manikin capai 66%, dukung ketahanan pangan di Kupang”, Sahabat PU – Media & Informasi, 2025.
[3] Soewarno, Hidrologi: Aplikasi Metode Statistik untuk Analisis Data Jilid 1, Bandung: Nova, 1995.
[4] The NASA Prediction of Worldwide Energy Resources (Power) Project, “Power Data Access Viewer”, 2025, https://power.larc.nasa.gov/data-access-viewer/?
[5] Japan Science and Technology Agency (JST), “JAXA GSMaP Rainfall Data (2003–2025),” 2025, https://sharaku.eorc.jaxa.jp/GSMaP/.
[6] Center for Hydrometeorology and Remote Sensing (CHRS), “CHRS Rainfall Data (2003–2025),” 2025, https://chrsdata.eng.uci.edu/.
[7] Direktorat Jenderal Sumber Daya Air, Satuan Kerja Balai Bendungan, Petunjuk Teknis Analisis Hidrologi dan Debit Banjir Bendungan, 2017.
[8] D. Harisuseno, J. S. Fidari, and S. N. Aulia, “Development of isohyet map of design rainfall at various return periods in Sadar sub-watershed,” Civilla: J. Teknik Sipil Universitas Islam Lamongan, vol. 9, no. 2, pp. 157–170, 2024.
[9] Suni, Y. P. K., “Evaluasi hubungan data hujan satelit PERSIANN-CDR dan data hujan pengukuran DAS Liliba,” in Proc. Semin. Nas. Riset dan Teknologi Terapan (RITEKTRA), 2021.
[10] Krisnayanti, D. S., et al., “Evaluation of GPM IMERG product against ground station rainfall data in semi-arid region,” Civil Engineering Journal, vol. 10, no. 12, 2024.
[11] Krisnayanti, D. S., et al., “Evaluasi kesesuaian data Tropical Rainfall Measuring Mission (TRMM) dengan data pos hujan pada DAS Temef di Kabupaten Timor Tengah Selatan,” Jurnal Sumber Daya Air, vol.16, no.1, 2024.
[12] Gerland, A., “Validasi data model prediksi curah hujan satelit GPM, GSMaP, dan CHIRPS selama periode siklon tropis Seroja 2021 di Provinsi Nusa Tenggara Timur,” GEOGRAPHIA Jurnal Pendidikan dan Penilitian Geografi, vol. 4, no. 1, pp. 44–50, 2023.
[13] M. Okirya and A. Du Plessis, “Evaluating bias correction methods using annual maximum series rainfall data,” Hydrology, vol. 12, no. 5, art. no. 113, 2025. https://doi.org/10.3390/hydrology12050113
[14] N. Wahi, A. Sarma, and S. K. Gorti, “Assessment of various rainfall bias correction methods including delta method,” in Proc. 2023 Int. Conf. on Modelling, Simulation, and Applied Mathematics, 2023, pp. 114–129.
[15] D. Maraun, F. Widmann, J. Gutiérrez, S. Kotlarski, and R. Chandler, “Bias correcting climate change simulations – a critical review,” Earth System Dynamics, vol. 8, no. 4, pp. 1041–1074, 2017.
[16] X. Li, Y. Chen, Z. Wang, and J. Li, “Statistical bias correction of precipitation forecasts based on quantile mapping,” Remote Sensing, vol. 15, no. 7, art. no. 1743, 2023.
[17] Almira, A. H., “Koreksi bias data hujan satelit PERSIANN sebagai alternatif pos stasiun hujan dengan pendekatan quantile mapping di Sub DAS Brantas Hulu,” Jurnal Talenta Sipil Fakultas Teknik Universitas Batanghari, vol. 7, no. 2, pp. 595–608, 2024.
[18] Y. Song and E.-S. Chung, “Intercomparison of bias correction methods for precipitation of multiple climate models,” Geoscientific Model Development, vol. 18, no. 4, pp. 8017–8045, 2025.
[19] D. N. Moriasi, M. W. Gitau, N. Pai, and P. Daggupati, “Hydrologic and water quality models: performance measures and evaluation criteria,” Trans. ASABE, vol. 58, no. 6, pp. 1763–1785, 2015.
[20] A. Khalil et al., “Inhomogeneity detection in the rainfall series for the Mae Klong River Basin, Thailand,” Applied Water Science, vol. 11, art. 147, 2021.
[21] B. Đurin, N. Kranjčić, S. Kanga, S. K. Singh, N. Sakač, Q. B. Pham, J. Hunt, D. Dogančić, and F. Di Nunno, “Application of Rescaled Adjusted Partial Sums (RAPS) method in hydrology – an overview,” Advances in Civil and Architectural Engineering, vol. 13, no. 25, pp. 58–72, Dec. 2022.
[22] Journal of Information Systems Engineering and Management, “Rainfall estimation methods including Thiessen Polygon for areal average rainfall calculation,” Journal of Information Systems Engineering and Management, vol. 10, no. 56s, 2025.
[23] Badan Meteorologi, Klimatologi, dan Geofisika, Data Hujan Harian 2001-2020. Stasiun Klimatologi Lasiana, 2021.
[24] Kementerian Agraria dan Tata Ruang/Badan Pertanahan Nasional, Unduh Data DEMNAS, 2025. Available: https://tanahair.indonesia.go.id/portal-web/unduh/demnas
[25] Badan Meteorologi, Klimatologi, dan Geofisika, Modul pelatihan informasi cuaca maritim untuk nelayan tangkap. Stasiun Meteorologi Maritim Tanjung Perak, 2017. Available: https://stamet-juanda.bmkg.go.id/home/data/buletin/Modul-PICM-Nelayan-Tangkap.pdf
[26] D. S. Wilks, Statistical Methods in the Atmospheric Sciences, 3rd ed. Oxford, U.K.: Academic Press, 2011.
[27] L. N. Ndoki, K. Awo, dan N. Manao, Laporan Hasil Pengamatan di Stasiun Klimatologi Kupang, Universitas Nusa Cendana, Kupang, Indonesia, 2022.
[28] Martha, J. W., dan Adidarma, W., Mengenal Dasar-Dasar Hidrologi. Bandung: Nova, pp.190-191, 1978.
[29] C. D. Soemarto, Hidrologi Teknik. Jakarta, Indonesia: Erlangga, 1987.
[30] Mukaka, M. M., “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Medical Journal, 2012
[31] N. Yao, J. Ye, S. Wang, S. Yang, Y. Lu, dan X. Yang, “Bias correction of hourly satellite precipitation products using machine learning methods enhanced with high-resolution meteorological simulations,” Atmos. Res., vol. 310, art. no. 107637, 2024, doi:10.1016/j.atmosres.2024.107637.
[32] J. Ye, Y. Lu, X. Yang, Z. He, P. Huang, dan X. Zheng, “Bias correction of hourly satellite precipitation products and their application in hydrological modeling in a hilly watershed,” Water, vol. 16, no. 1, art. 49, 2024, doi:10.3390/w16010049.
[33] L. Wei et al., “Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring,” Atmos. Res., 2021.
[34] G. F. Ziarh, S. Shahid, T. Ismail, M. Asaduzzaman, dan A. Dewan, “Correcting bias of satellite rainfall data using physical empirical model,” Atmos. Res., vol. 251, 2021, doi:10.1016/j.atmosres.2020.105430.
[35] M. Saber dan K. K. Yilmaz, “Evaluation and bias correction of satellite-based rainfall estimates for modelling flash floods,” Water, vol. 10, no. 5, art. 657, 2018, doi:10.3390/w10050657.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Irene Baria, Anak Agung Ngurah Satria Damarnegara, Mohammad Bagus Ansori

This work is licensed under a Creative Commons Attribution 4.0 International License.

















