Mass Optimization of Acid-Activated and Acid-Thermal-Activated Bentonite in Heavy Metal Adsorption

Authors

  • Jilan Nafisah Koenang Master Program of Chemical Engineering, Environmental Technology Universitas Sriwijaya, Palembang, 30139, Indonesia
  • Tuty Emilia Agustina Chemical Engineering Department, Faculty of Engineering Universitas Sriwijaya, Indralaya, 30662, Indonesia
  • Tine Aprianti Chemical Engineering Department, Faculty of Engineering Universitas Sriwijaya, Indralaya, 30662, Indonesia

DOI:

https://doi.org/10.51601/ijse.v5i4.279

Abstract

Heavy metal pollution such as Cu, Fe, and Pb is a serious environmental issue because it is toxic and can harm living things and the surrounding environment. Adsorption is a potential method to address heavy metal problems with bentonite as an adsorbent. Before use, natural bentonite will be activated first. Activation aims to increase the surface area, porosity, and number of active sites on the bentonite surface. This study aims to determine the optimum adsorbent mass in heavy metal adsorption and compare the best activation method using acid-activated bentonite (H₂SO₄ 1.2M) and acid-thermal activated bentonite, namely H₂SO₄ 1.2M and continued heating using a 300ᵒC furnace for 6 hours. In addition, comparing changes in the surface characteristics of acid bentonite and acid-thermal bentonite through characterization using SEM analysis. Adsorption was carried out using a single component synthetic solution containing Cu, Fe, and Pb metals with variations in adsorbent mass of 1, 2, 3, 4, and 5 grams. The results show that acid bentonite has an open and porous surface structure and has many active sites. In acid-thermal bentonite, the silicate structure becomes more stable despite slight damage to the Si structure and at a higher mass makes acid-thermal bentonite higher than acid bentonite. The optimum heavy metal degradation efficiency is achieved at an adsorbent mass of 1 gram with acid-activated bentonite which achieves a metal degradation efficiency of 45% Cu, 100% Fe and 88%.

Downloads

Download data is not yet available.

References

Emmanuel Abu-Danso, S. Peräniemi, T. Leiviskä, T. Kim, K. M. Tripathi, and A. Bhatnagar, “Synthesis of clay-cellulose biocomposite for the removal of toxic metal ions from aqueous medium,” J. Hazard. Mater., vol. 381, 2020, doi: https://doi.org/10.1016/j.jhazmat.2019.120871.

N. Hodzic, A. Dozic, I. Sestan, and H. Alihodzic, “Examination of Adsorption Abilities of Natural and Acid Activated Bentonite for Heavy Metals Removal from Aqueous Solutions,” Int. J. Res. Appl. Sci. Biotechnol., vol. 7, no. 1, pp. 1–6, 2020, doi: 10.31033/ijrasb.7.1.1.

A. Maged, J. Iqbal, S. Kharbish, I. S. Ismael, and A. Bhatnaga, “Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies,” J. Hazard. Mater., vol. 384, 2020, doi: https://doi.org/10.1016/j.jhazmat.2019.121320.

M. T. Berhe, G. G. Berhe, M. S. Cheru, and M. G. Weldehans, “Characterization of Acid Activation of Bentonite Clay of Hadar , Afar , Ethiopia,” vol. 2024, 2024, doi: 10.1155/2024/6413786.

W. Musie and G. Gonfa, “Thermal activation , characterization and performance evaluation of Ethiopian bentonite for sodium removal,” vol. 87, no. 4, pp. 998–1008, 2023, doi: 10.2166/wst.2023.031.

R. K. Sahdiah, Halimahtus., “Optimasi Tegangan Akselerasi pada Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy (SEM-EDX) untuk Pengamatan Morfologi Sampel Biologi,” Sains dan Edukasi Sains, vol. 6, no. 2, pp. 117–123, 2023, doi: https://doi.org/10.24246/juses.v6i2p117-123.

R. E. Estiarny, T. E. Agustina, T. I. Sari, and R. Gayatri, “The Effect of Bentonite Activation and Its Application on Reducing Metal Ions Levels in Wastewater,” vol. 17, no. 2, pp. 115–122, 2025.

M. M. Kolo, M. S. Batu, M. R. Bani, Y. Nana, and I. Kedang, “Kapasitas Adsorpsi Lempung Alam Teraktivasi HCl dalam Mengadsorpsi Logam Berat (Pb) Penyebab Pencemaran Lingkungan,” J. Ilmu Lingkung., vol. 22, no. 4, pp. 981–986, 2024, doi: 10.14710/jil.22.4.981-986.

A. N. Hidayat, E. Permana, and D. E. Wijaya, “Optimization of Bentonite Thermal Activation for Reducing Fe Metal and Organic Substance in Peat Water,” J. Community Based Environ. Eng. Manag., vol. 9, no. 1, pp. 63–70, 2025, doi: 10.23969/jcbeem.v9i1.22962.

M. & B. Saha, P. & Sarkar, A. & Lenka, S. & Mounissamy, V. & Yadav, and D. Kumar, “Improved Lead and Cadmium Adsorption from Wastewater Using Thermo-chemically Activated Bentonite: Equilibrium, Kinetics, and Thermodynamics,” Arch. Curr. Res. Int., vol. 25, no. 5, pp. 427–444, 2025.

M. R. Fauziyati, “Uji Adsorpsi Bentonit Teraktivasi KOH Terhadap Logam Cu(II),” Walisongo J. Chem., vol. 2, no. 2, p. 80, 2019, doi: 10.21580/wjc.v2i2.6028.

T. Bakalár, M. Kaňuchová, A. Girová, H. Pavolová, R. Hromada, and Z. Hajduová, “Characterization of Fe(III) Adsorption onto Zeolite and Bentonite,” Int. J. Environ. Res. Public Health, vol. 17, no. 16, pp. 1–13, 2020, doi: 10.3390/ijerph17165718.

X. Yang et al., “Adsorption and desorption effect of modified bentonite on soil heavy metal Pb / Cd and the feasibility assessment of reducing the ecotoxicity,” 2025.

Downloads

Published

2025-11-30

How to Cite

Nafisah Koenang, J., Emilia Agustina , T., & Aprianti, T. . (2025). Mass Optimization of Acid-Activated and Acid-Thermal-Activated Bentonite in Heavy Metal Adsorption. International Journal of Science and Environment (IJSE), 5(4), 304–308. https://doi.org/10.51601/ijse.v5i4.279