Chemical Composition, Fatty Acid Profile, And Amino Acid Profile of Sahoaki (Tripneustes Gratilla) Gonads From Sangihe Island, Indonesia

Authors

  • Ni Wayan Suriani Department of Science Education, Universitas Negeri Manado, 95618 Minahasa, Indonesia

DOI:

https://doi.org/10.51601/ijse.v5i4.240

Abstract

Sahoaki (Tripneustes gratilla), abundant in Sangihe Island, is a food ingredient by local people. This study aims to determine the chemical composition, fatty acid profile (bioactive content of omega-3, omega-6, and omega-9 fatty acids), and amino acid profile of the sahoaki gonads from Sangihe Island, Indonesia. The fatty acid profile was tested using the Gas Chromatography method (GC 7890B), while the amino acid profile was tested using Liquid chromatography-mass spectrometry. The results of research on fresh sahoaki gonads showed that the chemical composition: water content (84.24 and 85.99)%, fat (3.77 and 2.67)%, protein (10.12 and 9.34)%, carbohydrates (0.08 and 0.05)%, and ash (3.19 and 2.95)%. Fatty acid profile: there are 14 saturated fatty acid profiles, seven monounsaturated fatty acid profiles, nine polyunsaturated fatty acid profiles, the total content of omega-3 (19.46 and 15.95%), omega-6 (16.25 and 16, 39 %), and omega-9 (12.94 and 13.94%). Seven amino acid profiles were detected, consisting of five essential amino acids and two non-essential amino acids. Sahoaki gonads have good nutritional value because they contain high omega-3, Omega-6, and Omega-9 fatty acids and are equipped with essential amino acids, which have the potential as functional food ingredients.

Downloads

Download data is not yet available.

References

Handiani, D. N., Heriati, A., & Gunawan, W. A. (2022). Comparison of coastal vulnerability assessment for Subang Regency in North Coast West Java-Indonesia. Geomatics, Natural Hazards and Risk, 13(1), 1178-1206. https://doi.org/10.1080/19475705.2022.2066573

Afriansyah, A., Darmawan, A. R., & Pramudianto, A. (2022). Enforcing law in undelimited maritime areas: Indonesian border experience. The International Journal of Marine and Coastal Law, 37(2), 1-18. https://doi.org/10.1163/15718085-bja10092

Hermansyah, H., Setia, T. M., Utomo, C., Ramadhani, A. R., Sabihis, S., & Sahril, N. (2020). Preliminary study of coral reef conditions in marine park and coral reef education centre plan area, Seribu Islands National Park, Indonesia. Indonesian Journal of Biotechnology and Biodiversity, 4(1), 1-9. https://doi.org/10.47007/ijobb.v4i1.50

Mamede, R., Duarte, I. A., Caçador, I., Tanner, S. E., Silva, M., Jacinto, D., Fonseca, V. F., & Duarte, B. (2022). Elemental fingerprinting of sea urchin (Paracentrotus lividus) gonads to assess food safety and trace its geographic origin. Journal of Food Composition and Analysis, 114, 104764. https://doi.org/10.1016/j.jfca.2022.104764

Uneputty, P. A., Pattikawa, J. A., & Rijoly, F. (2017). Status populasi bulu babi Tripneustes gratilla di perairan Desa Liang, Pulau Ambon. Omni-Akuatika, 12(3), 98-105. http://dx.doi.org/10.20884/1.oa.2016.12.3.131

Huda, M. A. I., Sudarmadji, S., & Fajariyah, S. (2017). keanekaragaman jenis echinoidea di zona intertidal Pantai Jeding Taman Nasional Baluran. Berkala Sainstek, 5(2), 61-65. https://doi.org/10.19184/bst.v5i2.5531

Fraulaine, F. F., & Akobiarek, M. N. (2016). Penentuan kualitas protein berdasarkan kandungan asam amino pada bulu babi (Tripneustes gratilla Linnaeus). Novae Guinea Jurnal Biologi, 7(1). Retrieved from: https://ejournal.uncen.ac.id/index.php/NG/article/view/745

ITPC Osaka. (2014). Market brief: bulu babi (Uni). Jakarta. Retrieved from: https://itpc.or.jp/2014/08/19/bulu-babi-2014/

Wessel, G. M., Kiyomoto, M., Reitzel, A. M., & Carrier, T. J. (2022). Pigmentation biosynthesis influences the microbiome in sea urchins. Proceedings of the Royal Society B, 289(1981), 20221088. https://doi.org/10.1098/rspb.2022.1088

Sabilu, Y., Jafriati, & Madjid, R. (2022). Test of bioactitvity and antioxidant activity of sea urchin (Diadema setosum) gonads as medicinal ingredients based on marine biodiversity. Journal of Southwest Jiaotong University, 57(1). https://doi.org/10.35741/issn.0258-2724.57.1.13

Fitriansyah, M. (2018, October). Identifikasi echinodermata di pesisir Pulau Denawan, Kecamatan Pulau Sembilan. In Prosiding Seminar Nasional Lingkungan Lahan Basah (Vol. 3, No. 1). Retrieved from: https://snllb.ulm.ac.id/prosiding/index.php/snllb-lit/article/view/36

Ibrahim, I., Devira, C. N., & Purnawan, S. (2018, April). Struktur komunitas Echinoidea (bulu babi) di perairan pesisir pantai Teluk Nibung Kecamatan Pulau Banyak Kabupaten Aceh Singkil. In Prosiding Seminar Nasional Biotik (Vol. 5, No. 1). http://dx.doi.org/10.22373/pbio.v5i1.2145

Pringgenies, D. (2019). Bioprospeksi bahan hayati laut untuk pengembangan industri farmasi di Indonesia. Semarang: UNDIP Press.

Nane, L., & Paramata, A. R. (2020). Impact of overfishing on density and test-diameter size of the sea urchin Tripneustes gratilla at Wakatobi Archipelago, South-Eastern Sulawesi, Indonesia. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 25(2), 53-56. https://doi.org/10.14710/ik.ijms.25.2.53-56

Deli, T., Mohamed, A. B., Attia, M. H. B., Zitari-Chatti, R., Said, K., & Chatti, N. (2019). High genetic connectivity among morphologically differentiated populations of the black sea urchin Arbacia lixula (Echinoidea: Arbacioida) across the central African Mediterranean coast. Marine Biodiversity, 49(2), 603-620. https://doi.org/10.1007/s12526-017-0832-y

Kroh, A.; Mooi, R. (2022). World Echinoidea Database. Tripneustes gratilla (Linnaeus, 1758). Accessed through: World Register of Marine Species at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=212453 on 2022-11-04

Silahooy, V. B., & Toha, H. (2013). Spatial distribution and genetic diversity of Tripneustes gratilla in Ambon Island. Journal of Tropical Life Science, 3(3), 177-181. Retrieved from: https://jtrolis.ub.ac.id/index.php/jtrolis/article/view/122

Firmandana, T. C. (2014). Kelimpahan bulu babi (sea urchin) pada ekosistem karang dan lamun di Perairan Pantai Sundak, Yogyakarta. Management of Aquatic Resources Journal (MAQUARES), 3(4), 41-50. https://doi.org/10.14710/marj.v3i4.7030

Toha, A. H. A., Sumitro, S. B., & Hakim, L. (2015). Color diversity and distribution of sea urchin Tripneustes gratilla in Cenderawasih Bay ecoregion of Papua, Indonesia. The Egyptian Journal of Aquatic Research, 41(3), 273-278. https://doi.org/10.1016/j.ejar.2015.05.001

Lubis, S. A., Yolanda, R., Purnama, A. A., & Karno, R. (2016). The sea urchin (Echinoidea) from Panjang Island Water, Bangka Belitung Province. Omni-Akuatika, 12(2), 125-129. http://dx.doi.org/10.20884/1.oa.2016.12.2.111

Buwono, N. R., & Fitri, N. L. (2017). Diversity of Echinoderms in Balekambang Beach, Malang District, East Java. El-Hayah: Jurnal Biologi, 6(2), 35-40. https://doi.org/10.18860/elha.v6i2.4532

Wainwright, B. J., Arlyza, I. S., & Karl, S. A. (2018). Population genetics of the collector urchin, Tripneustes gratilla, in the Indonesian archipelago. Marine Ecology, 39(6), 1-12. https://doi.org/10.1111/maec.12530

Noviana, N. P. E., Julyantoro, P. G. S., & Pebriani, D. A. A. (2019). Distribusi dan kelimpahan bulu babi (Echinoidea) di perairan pulau Pasir Putih, desa Sumberkima, Buleleng, Bali. Current Trends in Aquatic Science, 2(1), 21-28. Retrieved from: https://ojs.unud.ac.id/index.php/CTAS/article/view/42514

Nomleni, A., Widodo, M. S., Kilawati, Y., & Valen, F. S. (2020). Contemporary records of sea urchin Tripneustes gratilla (Echinodermata: Echinoidea) in Timor Island, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 13(4), 1899-1905. Retrieved from: http://www.bioflux.com.ro/home/volume-13-4-2020/

Tamti, H., Rappe, R. A., & Omar, S. B. A. (2021, May). Preliminary assessment of Tripneustes gratilla populations in Seagrass Beds of the Spermonde Archipelago, South Sulawesi, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 763, No. 1, p. 012008). IOP Publishing. doi: 10.1088/1755-1315/763/1/012008

Toha, A. H. A., Ambariyanto, A., Widodo, W., Hakim, L., Sumitro, S. B., & Aminin, A. L. (2022). Genetic diversity and connectivity of sea urchin Tripneustes gratilla in region surrounding Cenderawasih Bay, Papua-Indonesia and Indo-Pacific. HAYATI Journal of Biosciences, 29(2), 155-163. https://doi.org/10.4308/hjb.29.2.155-163

Umagap, W. A. (2013). Keragaman spesies landak laut (Echinoidea) filum Echinodermata berdasar morfologi di Perairan Dofa Kabupaten Kepulauan Sula. Jurnal Bioedukasi, 1(2), 94-100. http://dx.doi.org/10.33387/bioedu.v1i2.4345

Radjab, A. W., & Purbiantoro, W. (2019, April). Effect of long-term maintenance on gonad characteristics and egg quality of collector sea urchin Tripneustes gratilla (LINNAEUS 1758). In IOP Conference Series: Earth and Environmental Science (Vol. 253, No. 1, p. 012009). IOP Publishing. doi: 10.1088/1755-1315/253/1/012009

Dako, F. X., Purwanto, R. H., Faida, L. R. W., & Sumardi, S. S. (2019). Tipologi pola konsumsi pangan untuk menjaga ketahanan pangan masyarakat sekitar kawasan hutan lindung Mutis Timau KPH Kabupaten Timor Tengah Selatan. Jurnal Ketahanan Nasional, 25(1), 92-106. https://doi.org/10.22146/jkn.39544

Machovina, B., Feeley, K. J., & Ripple, W. J. (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment, 536, 419-431. https://doi.org/10.1016/j.scitotenv.2015.07.022

Tupan, J., & Silaban, B. (2017). Karakteristik fisik-kimia bulu babi Diadema setosum dari beberapa perairan Pulau Ambon. TRITON: Jurnal Manajemen Sumberdaya Perairan, 13(2), 71-78. Retrieved from: https://ojs3.unpatti.ac.id/index.php/triton/article/view/786

Hadinoto, S., Sukaryono, I. D., & Siahay, Y. (2017). Kandungan gizi gonad dan aktivitas antibakteri ekstrak cangkang bulu babi (Diadema setosum). Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 12(1), 71-78. http://dx.doi.org/10.15578/jpbkp.v12i1.281

Afifudin, I. K., Suseno, S. H., & Jacoeb, A. M. (2014). Profil asam lemak dan asam amino gonad bulu babi. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 60-70. https://doi.org/10.17844/jphpi.v17i1.8138

Henry-Unaeze, H. N. (2017). Update on food safety of monosodium l-glutamate (MSG). Pathophysiology, 24(4), 243-249. https://doi.org/10.1016/j.pathophys.2017.08.001

Prihatno, M. R., Harahap, M. S., Akbar, I. B., & Bisri, T. (2014). Penurunan kadar glutamat pada cedera otak traumatik pasca pemberian agonis adrenoseptor alpha-2 dexmedetomidin sebagai indikator proteksi otak. Jurnal Neuroanestesi Indonesia, 3(2), 69-79. https://doi.org/10.24244/jni.vol3i2.138

Putra, M. D. H., Putri, R. M. S., Oktavia, Y., & Ilhamdy, A. F. (2020). Karakteristik asam amino dan asam lemak bekasam kerang bulu (Anadara antiquate) di desa benan kabupaten lingga. Marinade, 3(02), 159-167. https://doi.org/10.31629/marinade.v3i02.3404

Suriani, N. W., Wola, B. R., & Komansilan, A. (2022). Development of biological macromolecules three-tier test (BM-3T) to identify misconceptions of prospective science teachers. Jurnal Penelitian Pendidikan IPA, 8(4), 1798-1805. https://doi.org/10.29303/jppipa.v8i4.1297

[AOAC] Association of Official Analitycal Chemist. 2005. Official Method of Analysis of The Association of Official Analytical of Chemist. Arlington, Virginia (US): The Association of Official Analitycal Chemist Inc.

Hasan, F. (2002). Pengaruh konsentrasi garam terhadap mutu produk fermentasi gonad bulu babi jenis Tripneustes gratilla (L), B.Sc. Thesis, Bogor Agricultural University, Bogor, Indonesia.

Chasanah, E., & Andamari, R. (1997). Komposisi kimia, profil asam lemak, dan asam amino gonad bulu babi Tripneustes gratilla dan Salmacis sp. dan potensi pengembangannya. In Prosiding Seminar Kelautan LIPI-UNHAS ke-1. Balitbang Sumberdaya Laut, Puslitbang Oseanologi-LIPI (pp. 269-274).

Purwaningsih, S. (2012). Aktivitas antioksidan dan komposisi kimia keong matah merah (Cerithidea obtusa). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 17(1), 39-48. https://doi.org/10.14710/ik.ijms.17.1.39-48

Pais, A., Saba, S., Rubattu, R., Meloni, G., & Montisci, S. (2011). Proximate composition of edible sea urchin Paracentrotus lividus roe commercialised in sardinia/composizione centesimale di gonadi del riccio di mare edule Paracentrotus lividus commercializzate in sardegna. Biologia marina mediterranea, 18(1), 390-391. Retrieved from: https://www.researchgate.net/profile/Antonio-Pais-4/publication/229403476_Proximate_composition_of_edible_sea_urchin_Paracentrotus_lividus_roe_commercialised_in_Sardinia/links/09e4150f6ca6fbdd5c000000/Proximate-composition-of-edible-sea-urchin-Paracentrotus-lividus-roe-commercialised-in-Sardinia.pdf

McAlister, J. S., & Moran, A. L. (2012). Relationships among egg size, composition, and energy: a comparative study of geminate sea urchins. PLoS One, 7(7), e41599. https://doi.org/10.1371%2Fjournal.pone.0041599

Byrne, M., Sewell, M. A., & Prowse, T. A. A. (2008). Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Functional Ecology, 22(4), 643-648. https://doi.org/10.1111/j.1365-2435.2008.01427.x

Akerina, F. O., Nurhayati, T., & Suwandi, R. (2015). Isolation and characterization of antibacterial compounds from sea urchin. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(1), 61-73. https://doi.org/10.17844/jphpi.v18i1.9564

Martínez-Pita, I., García, F. J., & Pita, M. L. (2010). Males and females gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata). Helgoland Marine Research, 64(2), 135-142. https://doi.org/10.1007/s10152-009-0174-7

Tuminah, S. (2009). Efek asam lemak jenuh dan asam lemak tak jenuh "trans" terhadap kesehatan. Media Penelitian dan Pengembangan Kesehatan, 9(3), 13-20. Retrieved from: https://www.neliti.com/id/publications/152478/efek-asam-lemak-jenuh-dan-asam-lemak-tak-jenuh-trans-terhadap-kesehatan

Tuminah, S. (2009). Peran kolesterol HDL terhadap penyakit kardiovaskuler dan diabetes mellitus. Gizi Indonesia, 32(1), 69-76. http://dx.doi.org/10.36457/gizindo.v32i1.70

Purnami, S. E., & Pratiwi, R. T. (2014). Profil asam lemak gonad lima spesies landak laut (Echinoidea) dari Pantai Selatan Kabupaten Gunung Kidul Daerah Istimewa Yogyakarta. Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati, 19(1), 9-14. https://doi.org/10.24002/biota.v19i1.449

Siahaya, D. M. (2009). Analisis kandungan asam lemak pada gonad bulu babi (Tripneustes gratilla L.). Ichtyos, 8(2), 75–79.

Tangkilisan H. A., & Lestari H. (2001). Peran penambahan DHA pada susu formula. Sari Pediatri, 3(3), 147-151. https://dx.doi.org/10.14238/sp3.3.2001.147-51

Castle, F. L. D., & Gooder, R. P. (2010). Omega-3 and omega-6 fatty acid. NebGuide, University of Nebraska-Lincoln Extensions, Lincoln, NE, USA. Retrieved from: https://extensionpublications.unl.edu/assets/html/g2032/build/g2032.htm

Muhamad, N. A., & Mohamad, J. (2012). Fatty acids composition of selected Malaysian fishes. Sains Malaysiana, 41(1), 81-94. Retrieved from: https://www.ukm.my/jsm/pdf_files/SM-PDF-41-1-2012/10%20Nur%20Airina.pdf

Basmal, J. (2010). Lepidocybium flavobrunneum as a resource of essential fatty acids. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 5(3), 109-117. https://doi.org/10.15578/squalen.v5i3.54

Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega‐3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449-459. https://doi.org/10.1111/j.1365-277X.2004.00552.x

Hou, Y., Yin, Y., & Wu, G. (2015). Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Experimental Biology and Medicine, 240(8), 997-1007. https://doi.org/10.1177/1535370215587913

Hu, X., & Guo, F. (2021). Amino acid sensing in metabolic homeostasis and health. Endocrine Reviews, 42(1), 56-76. https://doi.org/10.1210/endrev/bnaa026

Eugenio, F.A., van Milgen, J., Duperray, J. Sergheraert, R., & Floc’h, L. (2022). Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids, 54, 157–168 (2022). https://doi.org/10.1007/s00726-021-03118-0

Hariani, Wiralis, Fathurrahman, T., Suwarni, Askrening, Imanuddin, Devianti, R., Rahayu, D. Y. S., Yunus, R., Arsulfa, & Sahmad. (2021). Aplikasi ‘’TETOY’’ dan optimalisasi pemanfaatan gonad bulu babi dalam mengatasi stunting untuk mewujudkan desa sehat di Bajo Indah Kecamatan Soropia Kabupaten Konawe. Krida Cendekia, 1(4), 11-18. Retrieved from: http://kridacendekia.com/index.php/jkc/article/view/42

Silaban, B. B., & Srimariana, E. S. (2013). Kandungan nutrisi dan pemanfaatan gonad bulu babi (Echinothrixs calamaris) dalam pembuatan kue bluder. Jurnal Pengolahan Hasil Perikanan Indonesia, 16(2), 108-118. https://doi.org/10.17844/jphpi.v16i2.8045

Scalise, M., Galluccio, M., Console, L., Pochini, L., & Indiveri, C. (2018). The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Frontiers in chemistry, 6(243), 1-12. https://doi.org/10.3389/fchem.2018.00243

Liao, S. M., Du, Q. S., Meng, J. Z., Pang, Z. W., & Huang, R. B. (2013). The multiple roles of histidine in protein interactions. Chemistry Central Journal, 7(1), 1-12. https://doi.org/10.1186/1752-153X-7-44

Matthews, D. E. (2020). Review of lysine metabolism with a focus on humans. The Journal of Nutrition, 150(Supplement_1), 2548S-2555S. https://doi.org/10.1093/jn/nxaa224

Azevedo, C., & Saiardi, A. (2016). Why always lysine? The ongoing tale of one of the most modified amino acids. Advances in Biological Regulation, 60, 144-150. https://doi.org/10.1016/j.jbior.2015.09.008

Nurina, M. E., Maryanto, S., & Pontang, G. S. (2020). The effect of giving modified modisco with soybeans against growth on protein energy malnutrition rats. Jurnal Gizi dan Kesehatan, 12(27), 59-64. https://doi.org/10.35473/jgk.v12i27.61

Dinu, A., & Apetrei, C. (2020). A review on electrochemical sensors and biosensors used in Phenylalanine Electroanalysis. Sensors, 20(9), 2496. https://doi.org/10.3390/s20092496

Niu, X., Yang, X., Mo, Z., Guo, R., Liu, N., Zhao, P., & Liu, Z. (2019). Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Bioelectrochemistry, 129, 189-198. https://doi.org/10.1016/j.bioelechem.2019.05.016

Suprayitno, E., & Sulistiyati, T. D. (2017). Metabolisme Protein. Malang: Universitas Brawijaya Press.

Wang, X. (2019). Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 103(5), 2101-2111. https://doi.org/10.1007/s00253-019-09632-2

Gu, C., Mao, X., Chen, D., Yu, B., & Yang, Q. (2019). Isoleucine plays an important role for maintaining immune function. Current Protein and Peptide Science, 20(7), 644-651. https://doi.org/10.2174/1389203720666190305163135

Duan, Y., Li, F., Li, Y., Tang, Y., Kong, X., Feng, Z., ... & Yin, Y. (2016). The role of leucine and its metabolites in protein and energy metabolism. Amino Acids, 48(1), 41-51. https://doi.org/10.1007/s00726-015-2067-1

Yoshimura, Y., Bise, T., Shimazu, S., Tanoue, M., Tomioka, Y., Araki, M., ... & Takatsuki, F. (2019). Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition, 58, 1-6. https://doi.org/10.1016/j.nut.2018.05.028

Taylor, P. M. (2014). Role of amino acid transporters in amino acid sensing. The American Journal of Clinical Nutrition, 99(1), 223S-230S. https://doi.org/10.3945/ajcn.113.070086

Kuo, M. T., Chen, H. H., Feun, L. G., & Savaraj, N. (2021). Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals, 14(1), 72. https://doi.org/10.3390/ph14010072

Wu, G., Bazer, F. W., Satterfield, M. C., Li, X., Wang, X., Johnson, G. A., ... & Wu, Z. (2013). Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids, 45(2), 241-256. https://doi.org/10.1007/s00726-013-1515-z

Öztürk, G., Saylan, Y., & Denizli, A. (2021). Designing composite cryogel carriers for tyrosine adsorption. Separation and Purification Technology, 254, 117622. https://doi.org/10.1016/j.seppur.2020.117622

Chauhan, P., Mundekkad, D., Mukherjee, A., Chaudhary, S., Umar, A., & Baskoutas, S. (2022). Coconut carbon dots: Progressive large-scale synthesis, detailed biological activities and smart sensing aptitudes towards tyrosine. Nanomaterials, 12(1), 162. https://doi.org/10.3390/nano12010162

Ménard‐Moyon, C., Venkatesh, V., Krishna, K. V., Bonachera, F., Verma, S., & Bianco, A. (2015). Self‐assembly of tyrosine into controlled supramolecular nanostructures. Chemistry–A European Journal, 21(33), 11681-11686. https://doi.org/10.1002/chem.201502076

Downloads

Published

2025-11-30

How to Cite

Suriani, N. W. (2025). Chemical Composition, Fatty Acid Profile, And Amino Acid Profile of Sahoaki (Tripneustes Gratilla) Gonads From Sangihe Island, Indonesia. International Journal of Science and Environment (IJSE), 5(4), 150–162. https://doi.org/10.51601/ijse.v5i4.240