Sentiment Analysis of Free Meal Program For School Students Using Algoritma Naive Bayes
DOI:
https://doi.org/10.51601/ijse.v5i3.215Abstract
The This research aims to analyze public sentiment toward the free meal program by utilizing the Naive Bayes Classifier (NBC) algorithm. The background of this research is based on the high public interaction on social media regarding this policy, thus requiring an analysis method that can effectively classify opinions into positive and negative sentiments. Data was collected from public posts on social media, followed by a text preprocessing stage, including data cleaning, tokenizing, stopword removal, and stemming. After that, the data was analyzed using the NBC algorithm to obtain sentiment classification. The research results show that the NBC model is capable of performing sentiment classification with an accuracy of 72%, precision of 84%, recall of 72%, and f-measure of 72%. These findings indicate that the majority of public opinion tends to be positive towards the free meal program, although there are still some negative opinions highlighting weaknesses in the policy's implementation. Overall, this research contributes by providing an objective picture of public perception through a machine learning approach. Moreover, this study proves that the NBC algorithm can be effectively used to analyze public opinion regarding government policies. Therefore, the results of this research are expected to serve as a reference in decision-making and policy evaluation in the future.
Downloads
References
A. Sitanggang, Y. Umaidah, and R. I. Adam, “Analisis sentimen masyarakat terhadap program makan siang gratis pada media sosial X menggunakan algoritma Naïve Bayes,” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3, 2024.
P. P. O. Mahawardana, G. A. Sasmita, and I. P. A. E. Pratama, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘Figure Pemimpin’ Menggunakan Python,” J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 810–820, 2022.
R. Yunita and M. Kamayani, “Perbandingan algoritma SVM dan Naïve Bayes pada analisis sentimen penghapusan kewajiban skripsi,” Indones. J. Comput. Sci., vol. 12, no. 5, 2023.
S. H. Ramadhani and M. I. Wahyudin, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” J. JTIK (Jurnal Teknol. Inf. Dan Komunikasi), vol. 6, no. 4, pp. 526–534, 2022.
A. H. Hasugian, R. A. Putri, and M. A. Simatupang, “Penerapan Algoritma Klasifikasi Naïve Bayes Untuk Analisis Sentimen Tentang Pemindahan Ibu Kota Negara,” J. Sci. Soc. Res., vol. 7, no. 2, pp. 635–644, 2024.
A. Hidayat, “Aplikasi Teks Mining Untuk Mendeteksi Spam Pada Email Berbasis Naive Bayes,” J. Teknol. Pint., 2022.
N. Khoirunnisaa, K. N. N. Kesuma, S. Setiawan, and A. Y. P. Yusuf, “Klasifikasi Teks Ulasan Aplikasi Netflix Pada Google Play Store Menggunakan Algoritma Naive Bayes dan SVM,” SKANIKA Sist. Komput. dan Tek. Inform., vol. 7, no. 1, pp. 64–73, 2024.
T. T. Widowati and M. Sadikin, “Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine,” J. SIMETRIS, vol. 11, no. 2, pp. 626–636, 2020.
A. Nisa, E. Darwiyanto, and I. Asror, “Analisis Sentimen Menggunakan Naive Bayes Classifier dengan Chi-Square Feature Selection Terhadap Penyedia Layanan Telekomunikasi,” eProceedings Eng., vol. 6, no. 2, 2019.
E. A. Lisangan, A. Gormantara, and R. Y. Carolus, “Implementasi Naive Bayes pada Analisis Sentimen Opini Masyarakat di Twitter Terhadap Kondisi New Normal di Indonesia,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 1, 2022.
H. Z. Muflih, A. R. Abdillah, and F. N. Hasan, “Analisis Sentimen Ulasan Pengguna Aplikasi Ajaib Menggunakan Metode Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 3, pp. 1613–1621, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anggy Dwi Anggreny, Suhardi

This work is licensed under a Creative Commons Attribution 4.0 International License.