Forecasting of The Crime Rate Using Automatic Clustering and Fuzzy Logic Relationship Method In North Sumatra
DOI:
https://doi.org/10.51601/ijse.v2i1.14Abstract
Currently the crime rate is very alarming and reported in various mass and electronic media. The high crime rate in the Province of Nort Sumatra is very unsettling for the community. The purpose of this research is to get the result of forecasting the crime ratel in the 2021 - 2024 using Automatic Clustering And Fuzzy Logic Relationship (ACFLR) method. The advantage of this method is that the method has a high level of accuracy because the Mean Absolute Percentage Error (MAPE) value is relative small and the results of forecasting analysis obtained in 2021 there are 31522 cases, in 2022 are 31533 cases, in 2023 are 31574 cases and the last one in 2024 was 31602 cases. In addition, the prediction error rate MAPE obtained is 0,35 %
Keywords: Crime rate, Automatic Clustering And Fuzzy Logic Relationship.
Downloads
References
A. M. Syam, Haryanensi. Metode Automatic Clustering And Fuzzy Logic Relationship Pada peramalan Tingkat Penduduk Di Kota Makassar. Jurnal Mathematics, Computations, and Statistics. 1, 2018, pp. 193–205.
I. Tri, Sugiman, Hendikawati. Perbandingan Tingkat Akurasi Metode Autimatic Clustering, Average Based Dan Markov Chain Fuzzy Time Series Pada Nilai Tukar (KURS) Rupiah. Jurnal Mathematics. 7, 2018, pp. 67 – 82.
K. Hilda, S. Siti. Perbandingan Metode Automatic Clustering And Fuzzy Logic Relationship Dan Arima Pada Peramalan Tingkat Pendaftaran Dan Tingkat Mahasiswa Baru Yang Melakukan Registrasi Di Universitas Islam Bandung. Jurnal Statistika. 5, 2019, pp. 40–46.
N. Ida, I. Ranggadara. Mean Absolute Percentage Error Un-tuk Evaluasi Hasil Prediksi Komoditas Laut. Jurnal of Information System. 5, 2020. pp. 250–255.
S. Sunarsan, S. Marubah. Analisis Peramalan Harga Emas Dengan Metode Automatic Clustering And Fuzzy Logic Relationship. Jurnal Information System Development. 3, 2018, pp. 104–115.
S. Sandu. Dasar Metodologi Penelitian. Yogyakarta: Literasi Media Publishing, 2018.
V. Muhammad, Muhammad. Implementasi Metode Fuzzy Time Series Untuk Peramalan Jumlah Pengunjung Di Benteng Fort Rotterdam. Jurnal of Statistic and Its Application on Teaching and Research. 2, 2020, pp. 1-12.
B. Sivanagaleela and S. Rajesh, Crime Analysis and Prediction Using Fuzzy C-Means Algorithm, 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 595-599, https://doi.org/10.1109/ICOEI.2019.8862691
R. Zhang, B, Ashuri, & Y, Deng. A novel method for forecasting time series based on fuzzy logic and visibility graph. Adv Data Anal Classif. 11, 2017, pp. 759–783, https://doi.org/10.1007/s11634-017-0300-3
M. Mittal, L. M, Goyal, L.M., Monitoring the Impact of Economic Crisis on Crime in India Using Machine Learning. Comput Econ. 53, 2019, pp. 1467–1485. https://doi.org/10.1007/s10614-018-9821-x
B. Shivani, D. Mehta, Rushabh D. Doshi Automatic Clustering Crime Region Prediction Model using Statistical Method in Data Mining. International Journal of Engineering and Technical Research. 9, https://doi.org/10.17577/IJERTV9IS040653
M. Melgarejo, C. Rodriguez, D. Mayorga, D., & N. Obregón, N. Time Series from Clustering: An Approach to Forecast Crime Patterns. In A. Sadollah, & C. M. Travieso-Gonzalez (Eds.), Recent Trends in Artificial Neural Networks-from Training to Prediction. IntechOpen.2019. https://doi.org/10.5772/intechopen.89561
E. Doynikova, E. Novikova, I. Kotenko. Attacker Behaviour Forecasting Using Methods of Intelligent Data Analysis: A Comparative Review and Prospects. Information. 11, 2020, pp. 168. https://doi.org/10.3390/info11030168
K. Nithyakumar, S.Preetha, R. Reshma, S. Aarthi. Crime Detection and Prevention Using Fuzzy Control Logic. SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) . 2020, pp. 30.
W. Weina, L. Xiaodong, Fuzzy forecasting based on automatic clustering and axiomatic fuzzy set classification, Information Sciences, 294. 2015, pp. 78-94. https://doi.org/10.1016/j.ins.2014.09.027.
Q. Wangren, Z. Ping, W. Yanhong. Fuzzy Time Series Forecasting Model Based on Automatic Clustering Techniques and Generalized Fuzzy Logical Relationship, Mathematical Problems in Engineering, 8, 2015. https://doi.org/10.1155/2015/962597
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Elsyah Suhadiyah, Sajaratud Dur, Hendra Cipta

This work is licensed under a Creative Commons Attribution 4.0 International License.