The Comparison of Reservoir Impoundment Duration between Ground Observation and Satellite Precipitation Product over Karian, Indonesia
DOI:
https://doi.org/10.51601/ijse.v5i1.121Abstract
The initial filling phase of reservoirs is a critical period that demands close supervision to ensure safety and functionality. During this phase, the dam is slowly filled with water, submerging floodplains until it reaches its intended storage capacity. This process assesses the response of the dam to water filling and its overall safety, with continuous monitoring and evaluation against design standards. The duration and rate of filling depend on several factors, i.e., precipitation, dam height, and hydropower plant sensitivity; thus, precipitation was the prominent driving force. However, as continuous precipitation data, multi-satellite global precipitation maps under the Global Precipitation Measurement near-real-time (GSMaP NRT) satellite products offer an alternative but tend to underestimate or overestimate rainfall values, posing challenges for accurate predictions. Bias correction methods of GSMaP NRT product in the spanning period of 2005–2022 demonstrated in agreement with ground observation data through the application of the artificial neural network (ANN) method to reduce the error bias to produce reliable results. This study highlights the importance of the impoundment period for reservoir sedimentation and overall dam safety. It emphasises the need for accurate precipitation data in reservoir management and recommends rigorous bias correction when using satellite data to substitute ground measurements.
Downloads
References
Admojo, D.D., Tebakari, T., Miyamoto, M., 2018. Evaluation of a Satellite-Based Rainfall Product for a Runoff Simulation of a Flood Event: a Case Study. 土木学会論文集 B1 (水工学) 74, I_73-I_78.
Courtnadge, A., Gosden, J., Brown, A., 2017. Guide to drawdown capacity for reservoir safety and emergency planning (No. SC130001), Main Guide. Environment Agency, Bristol, UK.
Aonashi, K., Liu, G.,2000. Passive microwave precipitation retrievals using TMI during the Baiu period of 1998. Part I: Algorithm description and validation. Journal of Applied Meteorology and Climatology 39, 2024–2037.
Bagtasa, G., 2022. Assessment of Tropical Cyclone Rainfall from GSMaP and GPM Products and Their Application to Analog Forecasting in the Philippines. Atmosphere 13, 1398. https://doi.org/10.3390/atmos13091398
Baxter, R.M., 1977. Environmental Effects of Dams and Impoundments. Annu. Rev. Ecol. Syst. 8, 255–283. https://doi.org/10.1146/annurev.es.08.110177.001351
Bikku T. 2020. Multi-layered deep learning perceptron approach for health risk prediction. Journal of Big Data. 7(50). doi: 10.1186/s40537-020-00316-7.
Biro Komunikasi Publik Kementerian PUPR, 2015. Pengisian Awal Waduk Jatigede Dimulai [WWW Document]. Kementerian PUPR. URL https://pu.go.id/berita/pengisian-awal-waduk-jatigede-dimulai (accessed 9.12.23).
Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J., Yu, Z., 2018. Geographically weighted regression based methods for merging satellite and gauge precipitation. Journal of Hydrology 558, 275–289.
Cheema, M.J.M., Bastiaanssen, W.G., 2012. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. International Journal of Remote Sensing 33, 2603–2627.
Chen, H., Yong, B., Gourley, J.J., Wen, D., Qi, W., Yang, K., 2022. A Novel Real-Time Error Adjustment Method With Considering Four Factors for Correcting Hourly Multi-Satellite Precipitation Estimates. IEEE Transactions on Geoscience and Remote Sensing 60, 1–11. https://doi.org/10.1109/TGRS.2021.3131238
Chen, H., Yong, B., Shen, Y., Liu, J., Hong, Y., Zhang, J., 2020. Comparison analysis of six purely satellite-derived global precipitation estimates. Journal of Hydrology 581, 124376.
Ciabatta, L., Brocca, L., Moramarco, T., Wagner, W., 2015. Comparison of different satellite rainfall products over the Italian territory. Presented at the Engineering Geology for Society and Territory-Volume 3: River Basins, Reservoir Sedimentation and Water Resources, Springer, pp. 623–626.
Darand, M., Siavashi, Z., 2021. An evaluation of global satellite mapping of precipitation (GSMAP) datasets over Iran. Meteorology and Atmospheric Physics 133, 911–923.
Fu, Q., Ruan, R., Liu, Y., 2011. Accuracy assessment of global satellite mapping of precipitation (GSMaP) product over Poyang Lake Basin, China. Procedia Environmental Sciences 10, 2265–2271.
Goel, M.K., 2011. Runoff Coefficient, in: Singh, V.P., Singh, P., Haritashya, U.K. (Eds.), Encyclopedia of Snow, Ice and Glaciers, Encyclopedia of Earth Sciences Series. Springer Netherlands, Dordrecht, pp. 952–953. https://doi.org/10.1007/978-90-481-2642-2_456
Hidayat, N., 2016. Pembangunan Bendungan Karian. Buletin KNI-BB 59–61.
ICOLD, C., 2018. Dam Surveillance Guide. CRC Press.
Jiang, Q., Li, W., Wen, J., Fan, Z., Chen, Y., Scaioni, M., Wang, J., 2019. Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China. Journal of Integrative Environmental Sciences 16, 191–207. https://doi.org/10.1080/1943815X.2019.1707233
Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2023. Menteri Basuki Tinjau Bendungan Karian di Lebak Banten, Siap Penuhi Kebutuhan Air Baku Sebesar 14,6 M3/Detik [WWW Document]. Kementerian PUPR. URL https://pu.go.id/berita/menteri-basuki-tinjau-bendungan-karian-di-lebak-banten-siap-penuhi-kebutuhan-air-baku-sebesar-146-m3detik (accessed 6.28.23).
Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2019. Pedoman Pengisian Awal Waduk.
Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2005. Laporan Perencanaan Hidrologi Bendungan Karian. Kementerian Pekerjaan Umum dan Perumahan Rakyat, Banten.
Komite Percepatan Penyediaan Infrastruktur Prioritas (KPPIP), 2022. Bendungan Karian [WWW Document]. URL https://kppip.go.id/proyek-strategis-nasional/bendungan-dan-irigasi/bendungan-karian/ (accessed 6.28.23).
Kubota, T., Aonashi, K., Ushio, T., Shige, S., Takayabu, Y.N., Kachi, M., Arai, Y., Tashima, T., Masaki, T., Kawamoto, N., Mega, T., Yamamoto, M.K., Hamada, A., Yamaji, M., Liu, G., Oki, R., 2020. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era, in: Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J. (Eds.), Satellite Precipitation Measurement: Volume 1, Advances in Global Change Research. Springer International Publishing, Cham, pp. 355–373. https://doi.org/10.1007/978-3-030-24568-9_20
Kubota, T., Ushio, T., Shige, S., Kida, S., Kachi, M., Okamoto, K., 2009. Verification of High-Resolution Satellite-Based Rainfall Estimates around Japan Using a Gauge-Calibrated Ground-Radar Dataset. Journal of the Meteorological Society of Japan. Ser. II 87A, 203–222. https://doi.org/10.2151/jmsj.87A.203
Kure, S., Jang, S., Ohara, N., Kavvas, M.L., Chen, Z.Q., 2013. WEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale. II: Model Application to Ungauged and Sparsely Gauged Watersheds. Journal of Hydrologic Engineering 18, 1272–1281. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000701
Kurter, E.C., 2022. A Study on Reservoir Filling Practices for Small Earthfill Dams. Middle East Technical University.
Petrovski, L., Mitovski, S. 2017. Comparison analysis of the behaviour of rockfill dams with clay core at the variation of the water level in the reservoir. Presented at the It’s a Small World: Managing Our Water Resources 37th Annual USSD Conference, United States Society on Dams.
Le, XH., Lee, G., Jung, K., An, H., Lee, S., Jung, Y. 2020. Application of convolutional neural network for spatiotemporal bias correction of daily satellite-based precipitation. Remote Sensing. 12(17). doi: 10.3390/rs12172731.
Leitão, N.S., Castilho, E., Farinha, M.L.B., 2023. Towards a Better Understanding of Concrete Arch Dam Behavior during the First Filling of the Reservoir. CivilEng 4, 151–173. https://doi.org/10.3390/civileng4010010
Liu, Y., Zhou, Y., Wen, S., & Tang, C., 2014. A Strategy on Selecting Performance Metrics for Classifier Evaluation. International Journal of Mobile Computing and Multimedia Communications, 6(4), 20–35.
Mahinroosta, R., Alizadeh, A., Gatmiri, B., 2015. Simulation of collapse settlement of first filling in a high rockfill dam. Engineering Geology 187, 32–44. https://doi.org/10.1016/j.enggeo.2014.12.013
Pakoksung, K., Takagi, M., 2016. Effect of satellite based rainfall products on river basin responses of runoff simulation on flood event. Model. Earth Syst. Environ. 2, 143. https://doi.org/10.1007/s40808-016-0200-0
Palharini, R.S.A., Vila, D.A., Rodrigues, D.T., Palharini, R.C., Mattos, E.V., Pedra, G.U., 2021. Assessment of extreme rainfall estimates from satellite-based: Regional analysis. Remote Sensing Applications: Society and Environment 23, 100603. https://doi.org/10.1016/j.rsase.2021.100603
Pitoko, R.A., 2017. Waduk Jatigede Beroperasi Penuh [WWW Document]. Kompas.com. URL https://properti.kompas.com/read/xml/2017/04/07/220000521/waduk.jatigede.beroperasi.penuh (accessed 9.12.23).
Priyambodoho, B.A., Kure, S., Yagi, R., Januriyadi, N.F., 2021. Flood inundation simulations based on GSMaP satellite rainfall data in Jakarta, Indonesia. Prog Earth Planet Sci 8, 34. https://doi.org/10.1186/s40645-021-00425-8
Rothe, J., 1973. Summary: geophysics report. Washington DC American Geophysical Union Geophysical Monograph Series 17, 441–454.
Rozante, J.R., Vila, D.A., Barboza Chiquetto, J., Fernandes, A.D.A., Souza Alvim, D., 2018. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sensing 10, 882. https://doi.org/10.3390/rs10060882
Sharifi, E., Saghafian, B., Steinacker, R., 2019. Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. Journal of Geophysical Research: Atmospheres 124, 789–805.
Task Committee to Revise Guidelines for Dam Instrumentation, de Rubertis, K., 2018. Performance Monitoring. Monitoring Dam Performance: Instrumentation and Measurements 5–14. https://doi.org/10.1061/9780784414828.ch02
Terzaghi, K., Peck, R.B., Mesri, G., 1996. Soil mechanics in engineering practice. John wiley & sons.
Ur Rahman, K., Shang, S., Shahid, M., Wen, Y., 2019. An appraisal of dynamic bayesian model averaging-based merged multi-satellite precipitation datasets over complex topography and the diverse climate of Pakistan. Remote Sensing 12, 10.
Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., Inoue, T., Takahashi, N., Iguchi, T., Kachi, M., Oki, R., Morimoto, T., Kawasaki, Z.-I., 2009. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. Journal of the Meteorological Society of Japan. Ser. II 87A, 137–151. https://doi.org/10.2151/jmsj.87A.137
Williams, O., 1997. Engineering and Design. Hydrologic Engineering Requirements for Reservoirs: Defense Technical Information Center, Fort Belvoir, VA. https://doi.org/10.21236/ADA402460
Wiltshire, R.L., 2002. 100 Years of Embankment Dam Design and Construction in the US Bureau of Reclamation. US Department of the Interior, Bureau of Reclamation.
Wu, S., Cao, W., Zheng, J., 2016. Analysis of working behavior of Jinping-I Arch Dam during initial impoundment. Water Science and Engineering 9, 240–248. https://doi.org/10.1016/j.wse.2016.11.001
Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., Liu, C., 2007. A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology 8, 607–626.
Yusron, V.F.A., Marsudi, S., Cahya, E.N., 2022. Analisis Perubahan Penjadwalan Pada Keterlambatan Proyek Dengan Menggunakan Software MS Project (Studi Kasus Proyek Main Dam Bendungan Karian, Lebak, Banten). jtresda 2, 1–264. https://doi.org/10.21776/ub.jtresda.2022.002.01.20
Zhou, Z., Guo, B., Xing, W., Zhou, J., Xu, F., Xu, Y., 2020. Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China. Atmospheric Research 246, 105132. https://doi.org/10.1016/j.atmosres.2020.105132
Ziarh, G.F., Shahid, S., Ismail, T.B., Asaduzzaman, M., Dewan, A., 2021. Correcting bias of satellite rainfall data using physical empirical model. Atmospheric Research 251, 105430. https://doi.org/10.1016/j.atmosres.2020.105430.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bambang Adhi Priyambodho , Anugerah Tiffanyputri Kristiani, Vittorio Kurniawan, Erma Yulihastin, Rizky Nugraha Putra Herlambang , Lely Qodrita Avia , Haries Satyawardhana , Restu Wigati , Subekti Subekti , Ngakan Putu Purnaditya , Paulus Setyo Nugroho

This work is licensed under a Creative Commons Attribution 4.0 International License.