International Journal of Science and Environment

The Influence of Rainfall Classification on Bias Correction of Satellite
Precipitation Products Power Merra-2, Gsmap, and Persiann-Ccs

Irene Baria™*, Anak Agung Ngurah Satria Damarnegara?, Mohammad Bagus Ansori®

123 Fakultas Teknik Sipil, Perencanaan, Dan Kebumian, Institut Teknologi Sepuluh Nopember, Indonesia
* Corresponding Author:
Email: irenebaria.ac@gmail.com

Abstract.

This study evaluates the effectiveness of six bias correction methods, namely Linear Scaling, Delta, second- and third-
order Polynomial, Quantile Mapping, and Hybrid Polynomial-Quantile Mapping, in improving satellite-based
precipitation estimates and assessing the performance of three satellite rainfall products through validation and
verification processes. In addition, the influence of rainfall classification on validation results is examined. Model
performance is evaluated using the correlation coefficient, percent bias (PBIAS), Nash—Sutcliffe efficiency (NSE), and
the ratio of RMSE to standard deviation (RSR). The results indicate that PERSIANN-CCS, despite having the smallest
grid size and the highest spatial resolution, exhibits greater rainfall variability and lower agreement with rain gauge
observations, particularly during extreme and minimum rainfall events. In contrast, GSMaP and Power MERRA-2
demonstrate rainfall patterns that are more consistent with observed data. Rainfall classification shows that the
calibration dataset consists of 60% normal years and 40% wet years, with no dry years, while the verification dataset
does not include wet-year conditions. Based on the calibration and validation results, Power MERRA-2 corrected using
the third-order polynomial method provides the best performance at daily, monthly, and annual timescales. Verification
results indicate satisfactory performance at monthly and annual scales, as well as improved daily-scale performance
under normal-year verification scenarios, supported by cumulative distribution function (CDF) analysis
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I INTRODUCTION

The Manikin Watershed is administratively located within Kupang Regency and Kupang City, East
Nusa Tenggara Province (NTT), Indonesia. Based on the outlet coordinates of the Manikin water level
gauging station, the watershed is situated at 10°0829.4” S and 123°41'22.7" E [1]. The Manikin Watershed
plays a crucial role in supplying water resources to parts of Kupang Regency, particularly for irrigation and
other water demands. This importance is indicated by the presence of three operational irrigation weirs and
one dam currently under construction in the upstream area [2]. The existence of this infrastructure highlights
the necessity for efficient and sustainable water resources management, which inevitably requires accurate
and comprehensive hydrological data. However, the availability of rainfall data in the Manikin Watershed
remains a significant challenge. At present, four rainfall gauging stations exist within the watershed;
nevertheless, during the most recent minimum ten-year period, these stations exhibit data gaps over several
time intervals [2]. Such data discontinuities can hinder long-term hydrological analyses. In particular,
statistical methods for design flood estimation require at least ten years of continuous and complete rainfall
data to produce reliable results [3]. The insufficiency of data from existing rain gauges has made the need for
alternative data sources increasingly urgent. As a solution, satellite-based precipitation data have been widely
adopted as an alternative source, especially for filling missing or unavailable rainfall records. Several
satellite precipitation products commonly used in hydrological studies include Power MERRA-2, GSMaP,
and PERSIANN.

These products offer extensive spatial and temporal coverage with consistent data availability,
enabling rainfall monitoring in regions with limited ground-based observation networks. The spatial
resolutions of these satellite products differ, with Power MERRA-2 providing a resolution of 0.5° x 0.625°
[4], GSMaP 0.1° x 0.1° [5], and PERSIANN-CCS 0.04° x 0.04° [6].Nevertheless, satellite precipitation data
cannot directly replace ground-based observations without prior validation. Each satellite product employs
different estimation algorithms, spatial resolutions, and data assimilation techniques, which may lead to
discrepancies relative to actual field conditions. To ensure the reliability of satellite data for water resources
analysis, their quality must be evaluated using suitability and agreement parameters against available rain
gauge observations. This validation process is essential, as satellite data exhibiting high correlation with
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measured rainfall are more likely to yield river discharge estimates with minimal bias and greater
representativeness of real hydrological conditions [7]. This assertion is consistent with findings reported in
Civilla: Jurnal Teknik Sipil Universitas Islam Lamongan, which emphasize that although satellite rainfall
data offer advantages in terms of accessibility and spatial coverage, adjustment to ground observations is still
required to ensure the validity and accuracy of hydrological outputs, such as design rainfall maps [8].

Based on a literature review of satellite rainfall analyses conducted in NTT Province, four related
studies have been identified, including evaluations of PERSIANN-CDR [9], GPM [10], TRMM [11], and
combined analyses of GPM, GSMaP, and CHIRPS [12]. However, to date, no study has comprehensively
compared the performance of three satellite precipitation products—Power MERRA-2, GSMaP, and
PERSIANN-CCS—against rain gauge data while simultaneously analyzing the influence of rainfall
classification (wet, normal, and dry years) on validation results.Therefore, this study aims to apply six bias
correction methods—Linear Scaling [13], Delta [14], second- and third-order Polynomial [15], Quantile
Mapping [16,17], and Hybrid Polynomial-Quantile Mapping [18]—to satellite precipitation data and to
evaluate the performance of the three satellite products through validation and verification analyses. In
addition, the study investigates the effect of rainfall classification on validation outcomes. Validation
performance is assessed using correlation coefficient interpretation, Percent Bias (PBIAS), Nash-Sutcliffe
Efficiency (NSE), and the Ratio of Root Mean Square Error to the Standard Deviation of Observations
(RSR) [19]. The results of this study are expected to provide recommendations on the most representative
satellite precipitation product and its corresponding bias correction equations for the Manikin Watershed, as
well as to serve as a reference for bias correction analysis of highly variable rainfall data in hydrological
studies conducted in regions with limited observational data.

1. METHODS

This study adopts a quantitative research design with an evaluative and comparative approach,
aiming to evaluate and compare the performance of satellite-based precipitation products—Power MERRA-
2, GSMaP, and PERSIANN-CCS—against observed rainfall data in the Manikin Watershed. The study
begins with the collection of rainfall observations from rain gauge stations influencing the Manikin
Watershed, obtained from the Nusa Tenggara Il River Basin Authority (BBWS Nusa Tenggara Il) [1] and
the Meteorology, Climatology, and Geophysics Agency (BMKG) of Kupang [23], followed by data
correction procedures.Topographic data collection includes the identification of the watershed outlet point
and the acquisition of the National Digital Elevation Model (DEM) [24]. Topographic analysis is conducted
by delineating the watershed and sub-watershed boundaries using the National DEM and outlet coordinates
in HEC-HMS software, with the resulting watershed boundary serving as a reference for satellite data
extraction.Satellite precipitation data are downloaded in hourly format for the period from 31 December
2003 to 31 December 2020, corresponding to the overlapping data availability of the three satellite products
and rain gauge observations within the Manikin Watershed.

For GSMaP and PERSIANN-CCS, spatial data in NetCDF (.nc) format are extracted and converted
into comma-separated values (.csv) format using QGIS software to enable further processing in spreadsheet
applications. After sorting the data according to the temporal format, temporal alignment between satellite
data recorded in Coordinated Universal Time (UTC) and rain gauge observation times is performed [25]. In
this study, a 15-hour time offset is applied, accounting for the 8-hour difference between Central Indonesia
Time (WITA) and UTC, in addition to the rain gauge observation time at 07:00 local time [27].Subsequently,
the data are aggregated into daily, monthly, and annual periods using Pivot Table and Power Query tools for
data filtering and processing in Microsoft Excel. Areal rainfall analysis is then conducted according to the
spatial coverage of each data source, resulting in a single representative rainfall time series for each dataset,
which enables subsequent comparison and validation prior to bias correction.Calibration, validation, and
verification analyses are performed using RStudio (R version 4.5.1) with the R programming language. Data
calibration is carried out using six bias correction methods over the calibration period of 2004-2013,
resulting in correction equations for each satellite product and each temporal aggregation period.
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Following bias correction, validation metrics are recalculated for the corrected satellite data,
allowing assessment of correction performance based on differences between validation results before and
after correction.The derived correction equations are subsequently applied to satellite precipitation data for
the verification period of 2014-2020. Verification scenarios are developed using the same six bias correction
methods and are further analyzed based on rainfall year classification (wet, normal, and dry). The final
analysis involves validation of the verification results to identify the optimal combination of satellite product
and bias correction method based on validation performance.To facilitate interpretation, validation results for
uncorrected satellite data, bias-corrected data from the calibration process, and verification outcomes are
summarized for each temporal aggregation period and correction method. Additionally, bias correction
performance is illustrated using scatter plots, cumulative distribution function (CDF) plots, and time series
analyses, which serve as the basis for drawing conclusions and formulating recommendations from this
study.

Description and Technical

The data received at the Data Processing Center were first sorted according to their temporal
sequence to form time series datasets. These time series were then subjected to consistency testing using the
Double Mass Curve (DMC) method [20] and the Rescaled Adjusted Partial Sums (RAPS) method [21]. After
the data were corrected and confirmed to be consistent, the analysis proceeded with the calculation of areal
average rainfall using the Thiessen polygon method [22].Calibration was performed using six bias correction
methods, namely Linear Scaling [13], Delta [14], second- and third-order Polynomial Regression [15],
Quantile Mapping [16,17], and Hybrid Polynomial-Quantile Mapping [18], as described below.

1) Linear Scaling Notation:
Pcorr = bias-corrected precipitation
Psat = satellite precipitation

Lot

P.sut

This method is implemented in RStudio using
the mean() function and vector operations.

R.‘m'r = Lyat *

P,,s = mean observed precipitation

P, = mean satellite precipitation

2) Delta
P.sut

R.‘m'r -

sat X

Mathematically, this formulation is identical to the Linear Scaling
method; however, its application context differs, particularly in
climate change impact studies. In RStudio, this method is
implemented using mean statistics and vector multiplication
operations.

3) Polynomial Regression Orde 2
RJLI.I; - ﬂPEuf Ll beu# Tc

RStudio implementation: Im(P obs ~ poly(P sat,
2, raw = TRUE))

Pobs = observed precipitation

Psat = satellite precipitation

a, b, dan ¢ = regression coefficients estimated using the least squares
method

4) Polynomial Regression Orde 3
RJF).\ - u'P_f“( + bPQ + (-"Pﬁu! +d

sat

RStudio implementation: Im(P obs ~ poly(P sat,
3, raw = TRUE))

Pobs = observed precipitation

Psat = satellite precipitation

a, b, ¢, d = regression coefficients estimated using the least squares
method

5) Quantile Mapping
R; - R} I(RH(PHE))

Pm = precipitation value from the model/satellite product

Fm = umulative distribution function (CDF) of the model data

Fm(Pm) = quantile (cumulative probability) of Pm based on the
model distribution

This method is implemented in RStudio using the F,! = inverse cumulative distribution function (inverse CDF) of
gmap package, specifically the functions observed precipitation
fitQmapQUANT() and doQmapQUANT(). Po = bias-corrected precipitation consistent with the observed
distribution
6) Hybrid Polynomial-Quantile Mapping P’ = preliminary bias-corrected precipitation (mm)
Stage 1: Polynomial Regression: Psat = satellite precipitation
P' = f(Pu) f() = p(IJIynomhi_aI tr)egression fuIT_ctiondrep[))resent(;ng thg pon_linear
] . . relationship between satellite and observed precipitation
Stage 2 Quantile Mapping QM) Pcorr = inal bias-corrected precipitation
Peorr = Fp (Fpo(P")) FP'() = cumulative distribution function (CDF) of polynomial-

In RStudio, this method is implemented by
combining the Im() function with the gmap
package.

corrected precipitation
Fobs—1(-) = inverse cumulative distribution function (inverse CDF)
of observed precipitation
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To evaluate the performance of the bias correction results, model performance tests were conducted
using statistical parameters as suggested by Moriasi et al. [19] [30], who classified statistical validation

metrics into several categories:

Table 1. Satellite Data Validation Assessment Criteria

Performance Rating RSR NSE PBIAS Performance Rating  Correlation Value
0.00<RSR < 9
Very Good 0.50 0.75 <NSE < 1.00 PBIAS < + 10% Very Low 0-0,19
0.50<RSR < + 10 <PBIAS <+
Good 0.60 0.65<NSE <0.75 15% Low 0,20-0,39
. 0.60 <RSR < + 15<PBIAS <+
Satisfactory 0.70 0.50 <NSE <0. 65 2506 Moderate 0,40-0,59
Unsatisfactory RSR > 0.70 NSE <0.50 PBIAS >+ 25% Strong 0,60-0,79
Very Strong 0,81-1

Source: Moriasi et al. (2007) Mukaka (2012).

1. RESULT AND DISCUSSION

Rain Post Data Analysis

Rain gauge data analysis involves compiling rainfall station records to determine total precipitation
over specific periods, along with the geographic coordinates of each station. The analysis includes double
mass curve testing to assess data consistency and areal rainfall estimation using the Thiessen polygon
method. This study analyzes data from four rainfall stations within the Manikin Watershed, as presented in
Table 2. The dataset used was aligned with the availability of both satellite precipitation data and
institutional rainfall records. Consequently, the most complete and comparable dataset spans the period from
2004 to 2020.Following data compilation, missing rainfall records were identified at the MRG Tarus and
MRG Tilong stations for several months in the years 2009, 2012, and 2019. These data gaps were filled
using the Inverse Square Distance (1SD) method [28] to ensure data continuity for subsequent analyses.

Table 2. Rain Post Data

Coordinate UTM Zone 51S

Data source

No Rain Post Name X Y

1 Baun 579206.64 8861915.41 BMKG Kupang
2 El Tari-Penfui 572599.35 8874949.6 BMKG Kupang
3 Tarus 574500.73 8879478.51 BWS NT II

4 Tilong 581310.11 8875961.53 BWS NT Il

Source:Data Collection Results (2025).

Double Mass Curve Test of Rainfall Post Data

This method is performed by comparing the cumulative rainfall of a selected rain gauge station with
the cumulative rainfall of surrounding stations, which is then plotted on a double mass curve graph. Data
consistency is assessed based on the deviation of the slope angle from the normal range (42° < a < 48°) [20].
The results of the double mass curve consistency test for the rain gauge data are presented in Figure and
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Source: Analysis Results (2025).
Fig 1. Recapitulation of the test curve of the double mass curve
of rainfall post data in the Manikin watershed
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Table 3. Recapitulation of the Alpha Angle of the Rain Post

No. Rain Post Name S o Status
1 MRG Baun 0.98 44.31 Consistent
2 MRG El Tari-Penfui 1.01 45.42 Consistent
3 MRG Tarus 0.97 44.15 Consistent
4 MRG Tilong 1.01 45.43 Consistent

Source: Analysis Results (2025).
Average Rainfall Analysis of Rainfall Post Areas
The Thiessen polygon delineation for the Manikin Watershed was performed using QGIS software
through the Vector — Geometry Tools — Voronoi Polygons function. The resulting spatial distribution of
rainfall station influence areas is presented in Figure 2.
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Source: Analysis Results (2025).
Fig 2. Rainfall Map of Rainfall Post Area in Manikin Watershed
After determining the area of each Thiessen polygon corresponding to the respective rain gauge
stations, the relative coefficient (Kr) was subsequently calculated for each station.
Table 4. Relative Coefficient Value of Thiessen Polygon Rainfall Post in Manikin Watershed

No. Rain Post Name Area (m2) Kr
1 MRG Baun 44331150.4 0.384
2 MRG El Tari- Penfui 34254669.15 0.296
3 MRG Tarus 4722796.44 0.041
4 MRG Tilong 32258345.1 0.279
Total 115566961.1 1.000

Source: Analysis Results (2025).

Analysis of Average Rainfall Area Satellite Rainfall Data

Satellite precipitation data used in this study consist of three products: Power MERRA-2, GSMaP,
and PERSIANN-CCS. PERSIANN-CCS provides precipitation grids with a spatial resolution of 0.04° x
0.04°, equivalent to approximately 4.4 x 4.4 km, GSMaP has a grid resolution of 0.1° x 0.1°, equivalent to
approximately 11.05 x 11.05 km, and Power MERRA-2 has a grid resolution of 0.5° x 0.625°, equivalent to
approximately 55.3 x 69.1 km (based on a conversion factor of 1 degree at the equator equal to 110.567 km).
Subsequently, satellite precipitation data were aggregated from hourly to daily, monthly, and annual time
scales after temporal adjustment, and the datasets were organized using Microsoft Excel Pivot Table and
Power Query tools for data filtering and processing.Prior to converting NetCDF files to CSV format, spatial
grids influencing the Manikin Watershed were selected. Power MERRA-2 utilized two grids, GSMaP four
grids, and PERSIANN-CCS fourteen grids. Thiessen coefficients were then calculated for the precipitation
grids of each satellite product with respect to the Manikin Watershed.
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Table 5. Relative Coefficient Values of Thiessen Polygons
of MERRA-2 Satellite Power in Manikin Watershed

Grid No. Power MERRA-2 Area (m2) Kr
1 85977868.81 0.744
2 29589092.28 0.256
Total 115566961.1 1.000

Source: Analysis Results (2025).

Table 6. Relative Coefficient Values of GSMap Satellite Thiessen Polygons in the Manikin Watershed

Grid No. GSMap Area (m2) Kr
1 17055862.15 0.148
2 32007961.83 0.277
3 44811524.63 0.388
4 21691612.48 0.188
Total 115566961.1 1.000

Source: Analysis Results (2025).

Table 7. Relative Coefficient Values of PERSIAN-CCS Satellite
Thiessen Polygons in the Manikin Watershed
Grid No. PERSIAN-CCS  Area (m2) Kr Grid No. PERSIAN-CCS  Area (m2) Kr

1 92327.26  0.0008 8 193240.44 0.0017
2 65687.01  0.0006 9 14497065 0.1254
3 7166079.9  0.062 10 19192608 0.1661
4 16598527.5 0.1436 11 3416709.1  0.0296
5 470216.67  0.0041 12 6437112.9  0.0557
6 17024691.1 0.1473 13 10876188  0.0941
7 17757692.4 0.1537 14 1778816.6  0.0154
Total 115566961 1

Source: Analysis Results (2025).
Based on regional rainfall calculations [22] from the Rain Post and 3 satellites studied, which are
shown in the following graph.
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Source: Analysis Results (2025).
Fig 3. Annual Rainfall Recapitulation Graph for the Region, Rainfall Post Data, MERRA-2
Power Satellite, PERSIANN-CCS Satellite and GSMap
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Source: Analysis Results (2025).
Fig 4. Monthly Rainfall Recapitulation Graph for the Region, Rainfall Post Data, MERRA-2
Power Satellite, PERSIANN-CCS Satellite and GSMap

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
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Source: Analysis Results (2025).
Fig 5. Daily Rainfall Recapitulation Graph for the Region, Rainfall Post Data,
MERRA-2 Power Satellite, PERSIANN-CCS Satellite and GSMap
Areal Average Rainfall Analysis of Satellite Precipitation Data
According to Soemarto, the hydrological conditions of a region are not constant, as annual rainfall
exhibits continuous fluctuations; therefore, it is essential to identify years that represent dry, normal, and wet
conditions [29]. Based on this classification, calibration and verification scenarios for data analysis can be
developed accordingly.
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Legend:
Rainy Year Qassification
Calibration
Verification 1 Dry
Verification 2
Verification 3

Source: Analysis Results (2025).
Fig 6. Calculation Scenario Based on Rainy Year Classification

Calibration of Satellite Precipitation Data

The bias correction analysis employed in this study includes Linear Scaling, the Delta Method,
second- and third-order polynomial regression, Quantile Mapping, and Hybrid Polynomial-Quantile
Mapping. Performance evaluation was conducted using the R software environment, supported by the
openxlIsx and dplyr packages for data processing, and the Metrics and hydroGOF packages for statistical
computations, including RMSE, NSE, RSR, and PBIAS. The fitQmapQUANT and doQmapQUANT
functions were utilized for the implementation of the Quantile Mapping method. Result visualization was
performed using the ggplot2 package, and all outputs were exported to Excel format using the writex|
package.
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Multi-methed scatter diagram of annual period Satellite Method Equality
GsMap GsMap Polynomial_3 1748.012237 +-1.23483x + 0.000697x"2
° GsMap Polynomial_2 -786.872079 + 1.995508x + -0.000308x"2
GsMap LinearScaling 118.709618 + 1.271122x + -0.000203x"2
GsMap Delta -968.324727 + 2.334232x + -0.000443x"2
GsMap Hybrid_Polynomial_QM 1486.730974 + -0.590245x + 4e-04x"2
GsMap QMAP_QUANT 1490.832305 + -0.594874x + 0.000401x"2
Method : PERSIANN-CCS Polynomial_3 774.93782 + 0.011035x + 0.00031x"2
: Ejt:d il om PERSIANN-CCS Polynomial_2 -31.308351 + 1.039941x + -1.3e-05x"2
— L scal - PERSIANN-CCS Delta 859.699676 + 0.422845x + 2.3e-05x"2
— Palynomial_2 PERSIANN-CCS LinearScaling 744.463902 + 0.480758x + 3.2e-05x"2
— Polynomial 3 PERSIANN-CCS Hybrid_Polynomial_QM 408.311134 + 0.841298x + -5.8e-05x"2
T CMARGLANT PERSIANN-CCS QMAP_QUANT 408.087259 + 0.841586x + -5.8e-05x 2
Power_Merra2 Polynomial_3 -189.572195 + 1.24093x + -7.5e-05x"2
Power_Merra2 Polynomial_2 12.205979 + 0.984485x + 5e-06x"2
Power_Merra2 Delta 376.09194 + 0.673623x + 5.5e-05x"2
Power_Merra2 LinearScaling 511.325616 + 0.6096x + 4.2e-05x"2
800 2000 © 1200 1 Power_Merra2 Hybrid_Polynomial_QM -1046.725192 + 2.563644x + -0.00055x 2
GSMap Satellite Rainfall (mm;) Power_Merra2 QMAP_QUANT -1046.928412 + 2.563938x + -0.00055x"2

Source: Analysis Results (2025).
Fig 7. Satellite Rain Data Calibration Results Annual Period

Satellite Method Equality
Scatter plot Multi method monthly period GsMap Polynomial_3 0.336046 + 0.99449x + 1.2e-05x"2
PERSIANN-CCS GsMap Polynomial_2 0.129756 +0.997869x + 5e-06x"2
GsMap LinearScaling 18.320058 + 0.982701x +-0.000247x"2
GsMap Delta -66.259711 + 1.518703x +-0.000543x"2
GsMap Hybrid_Polynomial_QM 3.109472 + 1.123179x + -0.000425x"2
GsMap QMAP_QUANT 3.107346 + 1.123219x +-0.000425x "2
Method : PERSIANN-CCS Polynomial_3 0.78281 + 0.984887x + 3.7e-05x"2
e PERSIANN-CCS Polynomial_2 17.088965 + 0.596588x + 0.001063x 2
—  Hybrid_Polynomial_Qih PERSIANN-CCS Delta 41.091646 + 1.2299x +-0.001091x"2
D o PERSIANN-CCS _LinearScaling -1.493379 + 1.554201x + -0.001552x"2
— Polynomial_3 PERSIANN-CCS Hybrid_Polynomial_QM -2.021678 + 1.356686x +-0.001033x"2
TR OMAR CIANT PERSIANN-CCS QMAP_QUANT -13.308623 + 1.607051x + -0.001586x"2
Power_Merra2 Polynomial_3 0.262548 + 0.996242x + 7e-06x"2
Power_Merra2 Polynomial_2 0.720934 + 0.989612x + 2e-05x"2
Power_Merra2 LinearScaling 3.802038 + 0.806109x + 0.000599x "2
Power_Merra2 Delta -25.068862 + 0.922638x + 0.000879x"2
N = T 560 e Power_Merra2 Hybrid_Polynomial_QM 15.639051 + 0.927335x + -5e-05x"2
PERSIANN-CCS Satellite Rainfall (mm) Power_Merra2 QMAP_QUANT 15.635619 + 0.927425x +-5.1e-05x"2

Source: Analysis Results (2025).
Fig 8. Satellite Rain Data Calibration Results Monthly Period

Multi-method scatter diagram of daily period Satellite Method Equality
Power_Merra2 -
= GsMap Polynomial_3 1.676183 + 0.813716x + 0.003409x"2
® GsMap QMAP_QUANT 7.301042 + 0.449274x +-0.000132x"2
GsMap Hybrid_Polynomial_QM 7.290367 + 0.450993x + -0.000162x"2
GsMap Polynomial_2 -0.1717 + 1.019535x + -0.00038x "2
GsMap LinearScaling 8.781617 + 0.341978x + -8.9e-05x"2
Method GsMap Delta 7.259595 + 0.457719x +-0.000159x "2
Beita PERSIANN-CCS Polynomial_3 2.655102 + 0.690702x + 0.00735x"2
Wybric _am _PERSIANN-CCS Hybrid_Polynomial_QM 9.527611 +0.287289x + -0.000294x"2
Linearscaling PERSIANN-CCS Polynomial_2 4.144286 + 0.476124x + 0.014343x"2
Felynomial_2 PERSIANN-CCS QMAP_QUANT 9.412944 + 0.301406x + -0.000389x~2
OMAP_QUXGNT PERSIANN-CCS LinearScaling 9.670964 + 0.298264x + -0.000697x"2
PERSIANN-CCS Delta 10.507398 + 0.231647x + -0.000432x"2
Power_Merra2 Polynomial 3 0.193067 + 0.974776x + 0.000507x"2
Power_Merra2 Hybrid_Polynomial_QM 3.622977 + 0.813522x +-0.002705x"2
Power_Merra2 Polynomial_2 1.58402 + 0.771783x + 0.00523x "2
Power_Merra2 QMAP_QUANT 3.582216 + 0.818378x +-0.002724x"2
Power_Merra2 LinearScaling 1.828416 + 0.959456x + -0.003577x"2
Power_Merra2 Delta -0.264386 + 1.134074x + -0.00484x"2

Source: Analysis Results (2025).
Fig 9. Satellite Rain Data Calibration Results Daily Period
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Fig 10. Comparison of NSE values based on calibration results
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Calibration was performed by applying bias correction and validation for all methods across each
temporal period and for all satellite products examined. Based on the calibration results, data interpretation
was subsequently conducted using validation performance metrics, as summarized in Table 1. Based on the
calibration results, the best-performing method was selected according to the validation metrics for each data
period—daily, monthly, and annual—and for each satellite product, as presented in the tables below.

Table 8. Comparison of Satellite Data Validation Before and After Daily Period Correction

Period Satellite Original I\_IS_E RSR Origingl PB_IAS
RMSE Original Original Correlation Original
Daily Power_Merra2 12.839 0.351 0.805 0.615 14.032
Daily GsMap 17.185 -0.163 1.078 0.460 25.114
Daily PERSIANN-CCS 25.094 -1.480 1.574 0.272 -27.058
Method Satellite Corrected NSE Corrected Correctgd Corrected
RMSE Corrected RSR Correlation PBIAS
Polynomial_3 Power_Merra2 12.290 0.405 0.771 0.637 0.000
Polynomial_3 GsMap 14.014 0.227 0.879 0.476 0.000
Polynomial_3 PERSIANN-CCS 15.262 0.083 0.957 0.288 0.000

Source: Analysis Results (2025).

Table 9. Comparison of Satellite Data Validation Before and After Monthly Period Correction

Period Satellite Original NSE RSR Original PBIAS

RMSE Original Original Correlation Original
Monthly Power_Merra2 0.739 0.508 0.904 17.414 0.739
Monthly GsMap 0.671 0.570 0.908 32.552 0.671
Monthly PERSIANN-CCS 0.371 0.789 0.791 -19.252 0.371

. Corrected NSE Corrected Corrected Corrected

Method Satellite RMSE Corrected RSR Correlation PBIAS
Polynomial 3 Power_ Merra2 69.703 0.826 0.415 0.909 0.000
Polynomial 3 GsMap 70.167 0.824 0.418 0.908 0.000
Polynomial_3 PERSIANN-CCS 88.824 0.717 0.529 0.847 0.000

Source: Analysis Results (2025).

Table 10. Comparison of Satellite Data Validation Before and After Annual Period Correction

Period Satellite Oerl\%lsnél Ollf\:g?ilrial RSR Original Original Correlation CE)EQI];?;I
Annual Power_Merra2 249.140 0.278 0.806 0.869 249.140
Annual GsMap 404.785 -0.905 1.309 0.717 404.785
Annual PERSIANN-CCS 547.980 -2.492 1.773 0.789 547.980

Method satellite Corrected NSE Corrected Correctgd Corrected

RMSE Corrected RSR Correlation PBIAS
Polynomial 3 Power_Merra2 144,798 0.756 0.468 0.870 0.000
Polynomial 3 GsMap 149.311 0.741 0.483 0.861 0.000
Polynomial_3 PERSIANN-CCS 203.217 0.520 0.657 0.721 0.000

Source: Analysis Results (2025).

Based on the calibration and validation results, the Power MERRA-2 satellite product corrected
using the third-order polynomial method exhibited the best validation performance among the other five
methods across the daily, monthly, and annual periods.

Verification of Satellite Precipitation Data

The verification process was conducted by applying the regression equations of the selected method
to the selected satellite product under the scenarios illustrated in Figure 6. Verification Scenario 1 consists of
50% normal and 50% dry years, Verification Scenario 2 comprises 100% normal years, and Verification
Scenario 3 comprises 100% dry years. The results of the verification analysis, presented in terms of
validation metrics, cumulative distribution function (CDF) plots, and time series graphs, are shown below.
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Table 11. Validation Results of Verification 1

Period RSR NSE Correlation PBIAS RSR Criteria  NSE Criteria RSR CDF NSE CDF
Daily 0.786  0.382 0.631 -7.954  Unsatisfactory Unsatisfactory 0.264 0.930

Monthly 0.487  0.759 0.886 -7.399 Very Good Very Good 0.289 0.916

Annual 0.603 0.575 0.894 -7.927 Satisfactory Satisfactory 0.615 0.619

Source: Analysis Results (2025).

Daily Time Series Graph - Power Merra-2 - Polynomial 3
Daily CDF - Power Merra-2 - Polynomial 3
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Fig 11. CDF Graph and Time Series Results of Verification 1

Table 12. Validation Results of Verification 2

2020

Period RSR NSE Correlation PBIAS RSR Criteria NSE Criteria  Criteria Correlation PBIAS Criteria
Daily 0.677 0.539 0.744 -9.773 Satisfactory Satisfactory Strong Very Good
Monthly 0.486 0.747 0.931 -19.671 Very Good Good Very Strong Satisfactory
Annual 0512 0.475 1.000 -7.764 Good Unsatisfactory Very Strong Very Good
Source: Analysis Results (2025).
Table 13. Validation Results of Verification 3
Period RSR NSE Correlation PBIAS RSR Criteria  NSE Criteria__ Criteria Correlation PBIAS Criteria
Daily 0.830 0.309 0.589 -9.197  Unsatisfactory  Unsatisfactory Moderate Very Good
Monthly 0.534 0.704 0.842 2.373 Good Good Very Strong Very Good
Annual 3.087 -13.29 0.998 -5.139  Unsatisfactory  Unsatisfactory Very Strong Very Good

Source: Analysis Results (2025).
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Figure 12. CDF Graph Results of Verification 2 and
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Iv. CONCLUSION

The PERSIANN-CCS satellite product has the smallest grid size and the largest number of spatial
grids (14 grids), resulting in greater variability in rainfall estimates. However, when compared with rain
gauge observations, noticeable discrepancies are observed between extreme rainfall and minimum rainfall
values. In contrast, GSMaP and Power MERRA-2 exhibit rainfall patterns that are more consistent with rain
gauge observations.Regarding rainfall classification, the calibration dataset comprises 60% normal and 40%
wet years, with no dry years included, while the verification dataset does not include wet years. Based on the
calibration and validation results, the Power MERRA-2 satellite product corrected using the third-order
polynomial method demonstrates the best validation performance among the other five methods across daily,
monthly, and annual periods.

Based on the calculation scenarios, although the calibration dataset does not include dry-year
rainfall, Verification Scenario 1, which incorporates both dry and normal rainfall years, demonstrates
satisfactory validation performance at the annual and monthly scales, but shows unsatisfactory performance
at the daily scale. In Verification Scenario 2, which includes only normal rainfall years, validation
performance at the daily scale improves to a satisfactory level. However, Verification Scenario 3, which
includes only dry rainfall years, exhibits unsatisfactory performance, particularly at the daily scale. Analysis
of the cumulative distribution function (CDF) indicates that rainfall values in the range of 5-25 mm are
better represented in Verification Scenario 2 (normal years only) compared to Verification Scenario 3 (dry
years only), in which the CDF predominantly represents rainfall values in the range of 5-15 mm.
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