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Abstract. 
 
This study evaluates the effectiveness of six bias correction methods, namely Linear Scaling, Delta, second- and third-

order Polynomial, Quantile Mapping, and Hybrid Polynomial–Quantile Mapping, in improving satellite-based 
precipitation estimates and assessing the performance of three satellite rainfall products through validation and 
verification processes. In addition, the influence of rainfall classification on validation results is examined. Model 
performance is evaluated using the correlation coefficient, percent bias (PBIAS), Nash–Sutcliffe efficiency (NSE), and 
the ratio of RMSE to standard deviation (RSR). The results indicate that PERSIANN-CCS, despite having the smallest 
grid size and the highest spatial resolution, exhibits greater rainfall variability and lower agreement with rain gauge 
observations, particularly during extreme and minimum rainfall events. In contrast, GSMaP and Power MERRA-2 
demonstrate rainfall patterns that are more consistent with observed data. Rainfall classification shows that the 
calibration dataset consists of 60% normal years and 40% wet years, with no dry years, while the verification dataset 

does not include wet-year conditions. Based on the calibration and validation results, Power MERRA-2 corrected using 
the third-order polynomial method provides the best performance at daily, monthly, and annual timescales. Verification 
results indicate satisfactory performance at monthly and annual scales, as well as improved daily-scale performance 
under normal-year verification scenarios, supported by cumulative distribution function (CDF) analysis 
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I. INTRODUCTION 

The Manikin Watershed is administratively located within Kupang Regency and Kupang City, East 

Nusa Tenggara Province (NTT), Indonesia. Based on the outlet coordinates of the Manikin water level 

gauging station, the watershed is situated at 10°08′29.4″ S and 123°41′22.7″ E [1]. The Manikin Watershed 

plays a crucial role in supplying water resources to parts of Kupang Regency, particularly for irrigation and 

other water demands. This importance is indicated by the presence of three operational irrigation weirs and 

one dam currently under construction in the upstream area [2]. The existence of this infrastructure highlights 

the necessity for efficient and sustainable water resources management, which inevitably requires accurate 

and comprehensive hydrological data. However, the availability of rainfall data in the Manikin Watershed 

remains a significant challenge. At present, four rainfall gauging stations exist within the watershed; 

nevertheless, during the most recent minimum ten-year period, these stations exhibit data gaps over several 

time intervals [2]. Such data discontinuities can hinder long-term hydrological analyses. In particular, 

statistical methods for design flood estimation require at least ten years of continuous and complete rainfall 

data to produce reliable results [3]. The insufficiency of data from existing rain gauges has made the need for 

alternative data sources increasingly urgent. As a solution, satellite-based precipitation data have been widely 

adopted as an alternative source, especially for filling missing or unavailable rainfall records. Several 

satellite precipitation products commonly used in hydrological studies include Power MERRA-2, GSMaP, 

and PERSIANN.  

These products offer extensive spatial and temporal coverage with consistent data availability, 

enabling rainfall monitoring in regions with limited ground-based observation networks. The spatial 

resolutions of these satellite products differ, with Power MERRA-2 providing a resolution of 0.5° × 0.625° 

[4], GSMaP 0.1° × 0.1° [5], and PERSIANN-CCS 0.04° × 0.04° [6].Nevertheless, satellite precipitation data 

cannot directly replace ground-based observations without prior validation. Each satellite product employs 

different estimation algorithms, spatial resolutions, and data assimilation techniques, which may lead to 

discrepancies relative to actual field conditions. To ensure the reliability of satellite data for water resources 

analysis, their quality must be evaluated using suitability and agreement parameters against available rain 

gauge observations. This validation process is essential, as satellite data exhibiting high correlation with 
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measured rainfall are more likely to yield river discharge estimates with minimal bias and greater 

representativeness of real hydrological conditions [7]. This assertion is consistent with findings reported in 

Civilla: Jurnal Teknik Sipil Universitas Islam Lamongan, which emphasize that although satellite rainfall 

data offer advantages in terms of accessibility and spatial coverage, adjustment to ground observations is still 

required to ensure the validity and accuracy of hydrological outputs, such as design rainfall maps [8]. 

Based on a literature review of satellite rainfall analyses conducted in NTT Province, four related 

studies have been identified, including evaluations of PERSIANN-CDR [9], GPM [10], TRMM [11], and 

combined analyses of GPM, GSMaP, and CHIRPS [12]. However, to date, no study has comprehensively 

compared the performance of three satellite precipitation products—Power MERRA-2, GSMaP, and 

PERSIANN-CCS—against rain gauge data while simultaneously analyzing the influence of rainfall 

classification (wet, normal, and dry years) on validation results.Therefore, this study aims to apply six bias 

correction methods—Linear Scaling [13], Delta [14], second- and third-order Polynomial [15], Quantile 

Mapping [16,17], and Hybrid Polynomial–Quantile Mapping [18]—to satellite precipitation data and to 

evaluate the performance of the three satellite products through validation and verification analyses. In 

addition, the study investigates the effect of rainfall classification on validation outcomes. Validation 

performance is assessed using correlation coefficient interpretation, Percent Bias (PBIAS), Nash–Sutcliffe 

Efficiency (NSE), and the Ratio of Root Mean Square Error to the Standard Deviation of Observations 

(RSR) [19]. The results of this study are expected to provide recommendations on the most representative 

satellite precipitation product and its corresponding bias correction equations for the Manikin Watershed, as 

well as to serve as a reference for bias correction analysis of highly variable rainfall data in hydrological 

studies conducted in regions with limited observational data. 

 

II.  METHODS  

This study adopts a quantitative research design with an evaluative and comparative approach, 

aiming to evaluate and compare the performance of satellite-based precipitation products—Power MERRA-

2, GSMaP, and PERSIANN-CCS—against observed rainfall data in the Manikin Watershed. The study 

begins with the collection of rainfall observations from rain gauge stations influencing the Manikin 

Watershed, obtained from the Nusa Tenggara II River Basin Authority (BBWS Nusa Tenggara II) [1] and 

the Meteorology, Climatology, and Geophysics Agency (BMKG) of Kupang [23], followed by data 

correction procedures.Topographic data collection includes the identification of the watershed outlet point 

and the acquisition of the National Digital Elevation Model (DEM) [24]. Topographic analysis is conducted 

by delineating the watershed and sub-watershed boundaries using the National DEM and outlet coordinates 

in HEC-HMS software, with the resulting watershed boundary serving as a reference for satellite data 

extraction.Satellite precipitation data are downloaded in hourly format for the period from 31 December 

2003 to 31 December 2020, corresponding to the overlapping data availability of the three satellite products 

and rain gauge observations within the Manikin Watershed.  

For GSMaP and PERSIANN-CCS, spatial data in NetCDF (.nc) format are extracted and converted 

into comma-separated values (.csv) format using QGIS software to enable further processing in spreadsheet 

applications. After sorting the data according to the temporal format, temporal alignment between satellite 

data recorded in Coordinated Universal Time (UTC) and rain gauge observation times is performed [25]. In 

this study, a 15-hour time offset is applied, accounting for the 8-hour difference between Central Indonesia 

Time (WITA) and UTC, in addition to the rain gauge observation time at 07:00 local time [27].Subsequently, 

the data are aggregated into daily, monthly, and annual periods using Pivot Table and Power Query tools for 

data filtering and processing in Microsoft Excel. Areal rainfall analysis is then conducted according to the 

spatial coverage of each data source, resulting in a single representative rainfall time series for each dataset, 

which enables subsequent comparison and validation prior to bias correction.Calibration, validation, and 

verification analyses are performed using RStudio (R version 4.5.1) with the R programming language. Data 

calibration is carried out using six bias correction methods over the calibration period of 2004–2013, 

resulting in correction equations for each satellite product and each temporal aggregation period. 
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 Following bias correction, validation metrics are recalculated for the corrected satellite data, 

allowing assessment of correction performance based on differences between validation results before and 

after correction.The derived correction equations are subsequently applied to satellite precipitation data for 

the verification period of 2014–2020. Verification scenarios are developed using the same six bias correction 

methods and are further analyzed based on rainfall year classification (wet, normal, and dry). The final 

analysis involves validation of the verification results to identify the optimal combination of satellite product 

and bias correction method based on validation performance.To facilitate interpretation, validation results for 

uncorrected satellite data, bias-corrected data from the calibration process, and verification outcomes are 

summarized for each temporal aggregation period and correction method. Additionally, bias correction 

performance is illustrated using scatter plots, cumulative distribution function (CDF) plots, and time series 

analyses, which serve as the basis for drawing conclusions and formulating recommendations from this 

study. 

Description and Technical 

The data received at the Data Processing Center were first sorted according to their temporal 

sequence to form time series datasets. These time series were then subjected to consistency testing using the 

Double Mass Curve (DMC) method [20] and the Rescaled Adjusted Partial Sums (RAPS) method [21]. After 

the data were corrected and confirmed to be consistent, the analysis proceeded with the calculation of areal 

average rainfall using the Thiessen polygon method [22].Calibration was performed using six bias correction 

methods, namely Linear Scaling [13], Delta [14], second- and third-order Polynomial Regression [15], 

Quantile Mapping [16,17], and Hybrid Polynomial–Quantile Mapping [18], as described below. 

1) Linear Scaling  

   
This method is implemented in RStudio using 

the mean() function and vector operations. 

Notation: 

Pcorr = bias-corrected precipitation 

Psat = satellite precipitation 

Pobs ̅̅ ̅̅ ̅̅ = mean observed precipitation 

Psat ̅̅ ̅̅ ̅= mean satellite precipitation 

2) Delta  

 

Mathematically, this formulation is identical to the Linear Scaling 

method; however, its application context differs, particularly in 

climate change impact studies. In RStudio, this method is 

implemented using mean statistics and vector multiplication 

operations. 

3) Polynomial Regression Orde 2  

 
RStudio implementation: lm(P obs ~ poly(P sat, 

2, raw = TRUE))  

Pobs = observed precipitation 

Psat = satellite precipitation 

a, b, dan c = regression coefficients estimated using the least squares 
method 

4) Polynomial Regression Orde 3  

 
RStudio implementation:  lm(P obs ~ poly(P sat, 

3, raw = TRUE)) 

Pobs = observed precipitation 

Psat = satellite precipitation 

a, b, c, d = regression coefficients estimated using the least squares 

method 

5) Quantile Mapping  

 
 

This method is implemented in RStudio using the 

qmap package, specifically the functions 
fitQmapQUANT() and doQmapQUANT(). 

Pm  = precipitation value from the model/satellite product 

Fm  = umulative distribution function (CDF) of the model data 

Fm(Pm) = quantile (cumulative probability) of Pm based on the 

model distribution 

Fo
−1 = inverse cumulative distribution function (inverse CDF) of 

observed precipitation 
Po   = bias-corrected precipitation consistent with the observed 

distribution 

6) Hybrid Polynomial–Quantile Mapping  

Stage 1: Polynomial Regression:  

  
Stage 2: Quantile Mapping (QM)

 
In RStudio, this method is implemented by 

combining the lm() function with the qmap 

package. 

P ′    = preliminary bias-corrected precipitation (mm) 

Psat  = satellite precipitation 

f(⋅)  = polynomial regression function representing the nonlinear 

relationship between satellite and observed precipitation 

Pcorr  = inal bias-corrected precipitation 

FP′(⋅)  = cumulative distribution function (CDF) of polynomial-

corrected precipitation 

Fobs−1(⋅) = inverse cumulative distribution function (inverse CDF) 
of observed precipitation 
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To evaluate the performance of the bias correction results, model performance tests were conducted 

using statistical parameters as suggested by Moriasi et al. [19] [30], who classified statistical validation 

metrics into several categories: 

Table 1. Satellite Data Validation Assessment Criteria 

Performance Rating RSR NSE PBIAS 

 

Performance Rating Correlation Value  

Very Good 
0.00 ≤ RSR ≤ 

0.50 
0.75 < NSE ≤ 1.00 PBIAS < ± 10% 

 

Very Low 
0 – 0,19 

Good 
0.50 < RSR ≤ 

0.60 
0.65 < NSE ≤ 0.75 

± 10 ≤ PBIAS < ± 

15% 
 

Low 
0,20 – 0,39 

Satisfactory 
0.60 < RSR ≤ 

0.70 
0.50 < NSE ≤ 0. 65 

± 15 ≤ PBIAS < ± 

25% 

 

Moderate 
0,40 – 0,59 

Unsatisfactory RSR > 0.70 NSE ≤ 0.50 PBIAS ≥ ± 25% 

 

Strong 0,60 – 0,79 

     

Very Strong 0,81 - 1 

Source: Moriasi et al. (2007) Mukaka (2012). 

 

III.  RESULT AND DISCUSSION  

Rain Post Data Analysis 

Rain gauge data analysis involves compiling rainfall station records to determine total precipitation 

over specific periods, along with the geographic coordinates of each station. The analysis includes double 

mass curve testing to assess data consistency and areal rainfall estimation using the Thiessen polygon 

method. This study analyzes data from four rainfall stations within the Manikin Watershed, as presented in 

Table 2. The dataset used was aligned with the availability of both satellite precipitation data and 

institutional rainfall records. Consequently, the most complete and comparable dataset spans the period from 

2004 to 2020.Following data compilation, missing rainfall records were identified at the MRG Tarus and 

MRG Tilong stations for several months in the years 2009, 2012, and 2019. These data gaps were filled 

using the Inverse Square Distance (ISD) method [28] to ensure data continuity for subsequent analyses. 

Table 2. Rain Post Data 

No Rain Post Name 
Coordinate UTM Zone 51S Data source 

X Y 
 

1 Baun 579206.64 8861915.41 BMKG Kupang 

2 El Tari-Penfui 572599.35 8874949.6 BMKG Kupang 

3 Tarus 574500.73 8879478.51 BWS NT II 

4 Tilong 581310.11 8875961.53 BWS NT II 

Source:Data Collection Results (2025). 

  Double Mass Curve Test of Rainfall Post Data 

This method is performed by comparing the cumulative rainfall of a selected rain gauge station with 

the cumulative rainfall of surrounding stations, which is then plotted on a double mass curve graph. Data 

consistency is assessed based on the deviation of the slope angle from the normal range (42° ≤ α ≤ 48°) [20]. 

The results of the double mass curve consistency test for the rain gauge data are presented in Figure and 

Table 3.  

  
Source: Analysis Results (2025). 

Fig 1. Recapitulation of the test curve of the double mass curve  

of rainfall post data in the Manikin watershed 
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Table 3. Recapitulation of the Alpha Angle of the Rain Post 

No. Rain Post Name S α  Status 

1 MRG Baun 0.98 44.31 Consistent 

2 MRG El Tari-Penfui 1.01 45.42 Consistent 

3 MRG Tarus 0.97 44.15 Consistent 

4 MRG Tilong 1.01 45.43 Consistent 

Source: Analysis Results (2025). 
 Average Rainfall Analysis of Rainfall Post Areas 

The Thiessen polygon delineation for the Manikin Watershed was performed using QGIS software 

through the Vector → Geometry Tools → Voronoi Polygons function. The resulting spatial distribution of 

rainfall station influence areas is presented in Figure 2.  

 
Source: Analysis Results (2025). 

Fig 2. Rainfall Map of Rainfall Post Area in Manikin Watershed 

After determining the area of each Thiessen polygon corresponding to the respective rain gauge 

stations, the relative coefficient (Kr) was subsequently calculated for each station.  

Table 4. Relative Coefficient Value of Thiessen Polygon Rainfall Post in Manikin Watershed 

No. Rain Post Name Area (m2) Kr 

1 MRG Baun 44331150.4 0.384 

2 MRG El Tari- Penfui 34254669.15 0.296 

3 MRG Tarus 4722796.44 0.041 

4 MRG Tilong 32258345.1 0.279 

Total 115566961.1 1.000 

Source: Analysis Results (2025). 

Analysis of Average Rainfall Area Satellite Rainfall Data 

Satellite precipitation data used in this study consist of three products: Power MERRA-2, GSMaP, 

and PERSIANN-CCS. PERSIANN-CCS provides precipitation grids with a spatial resolution of 0.04° × 

0.04°, equivalent to approximately 4.4 × 4.4 km, GSMaP has a grid resolution of 0.1° × 0.1°, equivalent to 

approximately 11.05 × 11.05 km, and Power MERRA-2 has a grid resolution of 0.5° × 0.625°, equivalent to 

approximately 55.3 × 69.1 km (based on a conversion factor of 1 degree at the equator equal to 110.567 km). 

Subsequently, satellite precipitation data were aggregated from hourly to daily, monthly, and annual time 

scales after temporal adjustment, and the datasets were organized using Microsoft Excel Pivot Table and 

Power Query tools for data filtering and processing.Prior to converting NetCDF files to CSV format, spatial 

grids influencing the Manikin Watershed were selected. Power MERRA-2 utilized two grids, GSMaP four 

grids, and PERSIANN-CCS fourteen grids. Thiessen coefficients were then calculated for the precipitation 

grids of each satellite product with respect to the Manikin Watershed. 
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Table 5. Relative Coefficient Values of Thiessen Polygons  

of MERRA-2 Satellite Power in Manikin Watershed 

Grid No.  Power MERRA-2 Area (m2) Kr 

1 85977868.81 0.744 

2 29589092.28 0.256 

Total 115566961.1 1.000 

Source: Analysis Results (2025). 

 

Table 6. Relative Coefficient Values of GSMap Satellite Thiessen Polygons in the Manikin Watershed 

Grid No. GSMap Area (m2) Kr 

1 17055862.15 0.148 

2 32007961.83 0.277 

3 44811524.63 0.388 

4 21691612.48 0.188 

Total 115566961.1 1.000 

Source: Analysis Results (2025). 

 

Table 7. Relative Coefficient Values of PERSIAN-CCS Satellite  

Thiessen Polygons in the Manikin Watershed 

Grid No. PERSIAN-CCS Area (m2) Kr Grid No. PERSIAN-CCS Area (m2) Kr 

1 92327.26 0.0008 8 193240.44 0.0017 

2 65687.01 0.0006 9 14497065 0.1254 

3 7166079.9 0.062 10 19192608 0.1661 

4 16598527.5 0.1436 11 3416709.1 0.0296 

5 470216.67 0.0041 12 6437112.9 0.0557 

6 17024691.1 0.1473 13 10876188 0.0941 

7 17757692.4 0.1537 14 1778816.6 0.0154 

      Total 115566961 1 

Source: Analysis Results (2025). 

Based on regional rainfall calculations [22] from the Rain Post and 3 satellites studied, which are 

shown in the following graph. 

 
Source: Analysis Results (2025). 

Fig 3. Annual Rainfall Recapitulation Graph for the Region, Rainfall Post Data, MERRA-2  

Power Satellite, PERSIANN-CCS Satellite and GSMap 
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Source: Analysis Results (2025). 

Fig 4. Monthly Rainfall Recapitulation Graph for the Region, Rainfall Post Data, MERRA-2  

Power Satellite, PERSIANN-CCS Satellite and GSMap 

 

 
Source: Analysis Results (2025). 

Fig 5. Daily Rainfall Recapitulation Graph for the Region, Rainfall Post Data,  

MERRA-2 Power Satellite, PERSIANN-CCS Satellite and GSMap 

Areal Average Rainfall Analysis of Satellite Precipitation Data  

According to Soemarto, the hydrological conditions of a region are not constant, as annual rainfall 

exhibits continuous fluctuations; therefore, it is essential to identify years that represent dry, normal, and wet 

conditions [29]. Based on this classification, calibration and verification scenarios for data analysis can be 

developed accordingly. 

 
Source: Analysis Results (2025). 

Fig 6. Calculation Scenario Based on Rainy Year Classification 

Calibration of Satellite Precipitation Data 

The bias correction analysis employed in this study includes Linear Scaling, the Delta Method, 

second- and third-order polynomial regression, Quantile Mapping, and Hybrid Polynomial–Quantile 

Mapping. Performance evaluation was conducted using the R software environment, supported by the 

openxlsx and dplyr packages for data processing, and the Metrics and hydroGOF packages for statistical 

computations, including RMSE, NSE, RSR, and PBIAS. The fitQmapQUANT and doQmapQUANT 

functions were utilized for the implementation of the Quantile Mapping method. Result visualization was 

performed using the ggplot2 package, and all outputs were exported to Excel format using the writexl 

package.  

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Legend:

Rainy Year Classification Wet 

Calibration Normal

Verification 1 Dry

Verification 2

Verification 3
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Source: Analysis Results (2025). 

Fig 7. Satellite Rain Data Calibration Results Annual Period 

 

  
Source: Analysis Results (2025). 

Fig 8. Satellite Rain Data Calibration Results Monthly Period 

  

 
Source: Analysis Results (2025). 

Fig 9. Satellite Rain Data Calibration Results Daily Period 

 
Source: Analysis Results (2025). 

Fig 10. Comparison of NSE values based on calibration results 

 Satellite Method Equality

GsMap Polynomial_3 1748.012237 + -1.23483x + 0.000697x^2

GsMap Polynomial_2 -786.872079 + 1.995508x + -0.000308x^2

GsMap LinearScaling 118.709618 + 1.271122x + -0.000203x^2

GsMap Delta -968.324727 + 2.334232x + -0.000443x^2

GsMap Hybrid_Polynomial_QM 1486.730974 + -0.590245x + 4e-04x^2

GsMap QMAP_QUANT 1490.832305 + -0.594874x + 0.000401x^2

PERSIANN-CCS Polynomial_3 774.93782 + 0.011035x + 0.00031x^2

PERSIANN-CCS Polynomial_2 -31.308351 + 1.039941x + -1.3e-05x^2

PERSIANN-CCS Delta 859.699676 + 0.422845x + 2.3e-05x^2

PERSIANN-CCS LinearScaling 744.463902 + 0.480758x + 3.2e-05x^2

PERSIANN-CCS Hybrid_Polynomial_QM 408.311134 + 0.841298x + -5.8e-05x^2

PERSIANN-CCS QMAP_QUANT 408.087259 + 0.841586x + -5.8e-05x^2

Power_Merra2 Polynomial_3 -189.572195 + 1.24093x + -7.5e-05x^2

Power_Merra2 Polynomial_2 12.205979 + 0.984485x + 5e-06x^2

Power_Merra2 Delta 376.09194 + 0.673623x + 5.5e-05x^2

Power_Merra2 LinearScaling 511.325616 + 0.6096x + 4.2e-05x^2

Power_Merra2 Hybrid_Polynomial_QM -1046.725192 + 2.563644x + -0.00055x^2

Power_Merra2 QMAP_QUANT -1046.928412 + 2.563938x + -0.00055x^2

 Satellite Method Equality

GsMap Polynomial_3 0.336046 + 0.99449x + 1.2e-05x^2

GsMap Polynomial_2 0.129756 + 0.997869x + 5e-06x^2

GsMap LinearScaling 18.320058 + 0.982701x + -0.000247x^2

GsMap Delta -66.259711 + 1.518703x + -0.000543x^2

GsMap Hybrid_Polynomial_QM 3.109472 + 1.123179x + -0.000425x^2

GsMap QMAP_QUANT 3.107346 + 1.123219x + -0.000425x^2

PERSIANN-CCS Polynomial_3 0.78281 + 0.984887x + 3.7e-05x^2

PERSIANN-CCS Polynomial_2 17.088965 + 0.596588x + 0.001063x^2

PERSIANN-CCS Delta 41.091646 + 1.2299x + -0.001091x^2

PERSIANN-CCS LinearScaling -1.493379 + 1.554201x + -0.001552x^2

PERSIANN-CCS Hybrid_Polynomial_QM -2.021678 + 1.356686x + -0.001033x^2

PERSIANN-CCS QMAP_QUANT -13.308623 + 1.607051x + -0.001586x^2

Power_Merra2 Polynomial_3 0.262548 + 0.996242x + 7e-06x^2

Power_Merra2 Polynomial_2 0.720934 + 0.989612x + 2e-05x^2

Power_Merra2 LinearScaling 3.802038 + 0.806109x + 0.000599x^2

Power_Merra2 Delta -25.068862 + 0.922638x + 0.000879x^2

Power_Merra2 Hybrid_Polynomial_QM 15.639051 + 0.927335x + -5e-05x^2

Power_Merra2 QMAP_QUANT 15.635619 + 0.927425x + -5.1e-05x^2

 Satellite Method Equality

GsMap Polynomial_3 1.676183 + 0.813716x + 0.003409x^2

GsMap QMAP_QUANT 7.301042 + 0.449274x + -0.000132x^2

GsMap Hybrid_Polynomial_QM 7.290367 + 0.450993x + -0.000162x^2

GsMap Polynomial_2 -0.1717 + 1.019535x + -0.00038x^2

GsMap LinearScaling 8.781617 + 0.341978x + -8.9e-05x^2

GsMap Delta 7.259595 + 0.457719x + -0.000159x^2

PERSIANN-CCS Polynomial_3 2.655102 + 0.690702x + 0.00735x^2

PERSIANN-CCS Hybrid_Polynomial_QM 9.527611 + 0.287289x + -0.000294x^2

PERSIANN-CCS Polynomial_2 4.144286 + 0.476124x + 0.014343x^2

PERSIANN-CCS QMAP_QUANT 9.412944 + 0.301406x + -0.000389x^2

PERSIANN-CCS LinearScaling 9.670964 + 0.298264x + -0.000697x^2

PERSIANN-CCS Delta 10.507398 + 0.231647x + -0.000432x^2

Power_Merra2 Polynomial_3 0.193067 + 0.974776x + 0.000507x^2

Power_Merra2 Hybrid_Polynomial_QM 3.622977 + 0.813522x + -0.002705x^2

Power_Merra2 Polynomial_2 1.58402 + 0.771783x + 0.00523x^2

Power_Merra2 QMAP_QUANT 3.582216 + 0.818378x + -0.002724x^2

Power_Merra2 LinearScaling 1.828416 + 0.959456x + -0.003577x^2

Power_Merra2 Delta -0.264386 + 1.134074x + -0.00484x^2
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Calibration was performed by applying bias correction and validation for all methods across each 

temporal period and for all satellite products examined. Based on the calibration results, data interpretation 

was subsequently conducted using validation performance metrics, as summarized in Table 1. Based on the 

calibration results, the best-performing method was selected according to the validation metrics for each data 

period—daily, monthly, and annual—and for each satellite product, as presented in the tables below.  

Table 8. Comparison of Satellite Data Validation Before and After Daily Period Correction 

Period  Satellite 
Original 

RMSE 

NSE 

Original 

RSR 

Original 

Original 

Correlation 

PBIAS 

Original 

Daily Power_Merra2 12.839 0.351 0.805 0.615 14.032 

Daily GsMap 17.185 -0.163 1.078 0.460 25.114 

Daily PERSIANN-CCS 25.094 -1.480 1.574 0.272 -27.058 

Method  Satellite 
Corrected 

RMSE 

NSE 

Corrected 

Corrected 

RSR 

Corrected 

Correlation 

Corrected 

PBIAS 

Polynomial_3 Power_Merra2 12.290 0.405 0.771 0.637 0.000 

Polynomial_3 GsMap 14.014 0.227 0.879 0.476 0.000 

Polynomial_3 PERSIANN-CCS 15.262 0.083 0.957 0.288 0.000 

Source: Analysis Results (2025). 

 

Table 9. Comparison of Satellite Data Validation Before and After Monthly Period Correction 

Period  Satellite 
Original 

RMSE 

NSE 

Original 

RSR 

Original 

Original 

Correlation 

PBIAS 

Original 

Monthly Power_Merra2 0.739 0.508 0.904 17.414 0.739 

Monthly GsMap 0.671 0.570 0.908 32.552 0.671 

Monthly PERSIANN-CCS 0.371 0.789 0.791 -19.252 0.371 

Method  Satellite 
Corrected 

RMSE 

NSE 

Corrected 

Corrected 

RSR 

Corrected 

Correlation 

Corrected 

PBIAS 

Polynomial_3 Power_Merra2 69.703 0.826 0.415 0.909 0.000 

Polynomial_3 GsMap 70.167 0.824 0.418 0.908 0.000 

Polynomial_3 PERSIANN-CCS 88.824 0.717 0.529 0.847 0.000 

Source: Analysis Results (2025). 

 

Table 10. Comparison of Satellite Data Validation Before and After Annual Period Correction 

Period  Satellite 
Original 

RMSE 

NSE 

Original 
RSR Original Original Correlation 

PBIAS 

Original 

Annual Power_Merra2 249.140 0.278 0.806 0.869 249.140 

Annual GsMap 404.785 -0.905 1.309 0.717 404.785 

Annual PERSIANN-CCS 547.980 -2.492 1.773 0.789 547.980 

Method  Satellite 
Corrected 

RMSE 

NSE 

Corrected 

Corrected 

RSR 

Corrected 

Correlation 

Corrected 

PBIAS 

Polynomial_3 Power_Merra2 144.798 0.756 0.468 0.870 0.000 

Polynomial_3 GsMap 149.311 0.741 0.483 0.861 0.000 

Polynomial_3 PERSIANN-CCS 203.217 0.520 0.657 0.721 0.000 

Source: Analysis Results (2025). 

Based on the calibration and validation results, the Power MERRA-2 satellite product corrected 

using the third-order polynomial method exhibited the best validation performance among the other five 

methods across the daily, monthly, and annual periods.  

Verification of Satellite Precipitation Data 

The verification process was conducted by applying the regression equations of the selected method 

to the selected satellite product under the scenarios illustrated in Figure 6. Verification Scenario 1 consists of 

50% normal and 50% dry years, Verification Scenario 2 comprises 100% normal years, and Verification 

Scenario 3 comprises 100% dry years. The results of the verification analysis, presented in terms of 

validation metrics, cumulative distribution function (CDF) plots, and time series graphs, are shown below. 
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Table 11. Validation Results of Verification 1  

Period RSR NSE  Correlation PBIAS RSR Criteria NSE Criteria RSR CDF NSE CDF  

Daily 0.786 0.382 0.631 -7.954 Unsatisfactory Unsatisfactory 0.264 0.930 

Monthly 0.487 0.759 0.886 -7.399 Very Good Very Good 0.289 0.916 

Annual 0.603 0.575 0.894 -7.927 Satisfactory Satisfactory 0.615 0.619 

Source: Analysis Results (2025). 

 

       
Source: Analysis Results (2025). 

Fig 11. CDF Graph and Time Series Results of Verification 1  

 

Table 12. Validation Results of Verification 2  

Period RSR NSE  Correlation PBIAS RSR Criteria NSE Criteria Criteria Correlation PBIAS Criteria 

Daily 0.677 0.539 0.744 -9.773 Satisfactory Satisfactory Strong Very Good 

Monthly 0.486 0.747 0.931 -19.671 Very Good Good Very Strong Satisfactory 

Annual 0.512 0.475 1.000 -7.764 Good Unsatisfactory Very Strong Very Good 

Source: Analysis Results (2025). 

 

Table 13. Validation Results of Verification 3  

Period RSR NSE  Correlation PBIAS RSR Criteria NSE Criteria Criteria Correlation PBIAS Criteria 

Daily 0.830 0.309 0.589 -9.197 Unsatisfactory Unsatisfactory Moderate Very Good 

Monthly 0.534 0.704 0.842 2.373 Good Good Very Strong Very Good 

Annual 3.087 -13.29 0.998 -5.139 Unsatisfactory Unsatisfactory Very Strong Very Good 

Source: Analysis Results (2025). 

  

     
Source: Analysis Results (2025). 

Figure  12. CDF Graph Results of Verification 2 and 
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IV.  CONCLUSION 

The PERSIANN-CCS satellite product has the smallest grid size and the largest number of spatial 

grids (14 grids), resulting in greater variability in rainfall estimates. However, when compared with rain 

gauge observations, noticeable discrepancies are observed between extreme rainfall and minimum rainfall 

values. In contrast, GSMaP and Power MERRA-2 exhibit rainfall patterns that are more consistent with rain 

gauge observations.Regarding rainfall classification, the calibration dataset comprises 60% normal and 40% 

wet years, with no dry years included, while the verification dataset does not include wet years. Based on the 

calibration and validation results, the Power MERRA-2 satellite product corrected using the third-order 

polynomial method demonstrates the best validation performance among the other five methods across daily, 

monthly, and annual periods. 

Based on the calculation scenarios, although the calibration dataset does not include dry-year 

rainfall, Verification Scenario 1, which incorporates both dry and normal rainfall years, demonstrates 

satisfactory validation performance at the annual and monthly scales, but shows unsatisfactory performance 

at the daily scale. In Verification Scenario 2, which includes only normal rainfall years, validation 

performance at the daily scale improves to a satisfactory level. However, Verification Scenario 3, which 

includes only dry rainfall years, exhibits unsatisfactory performance, particularly at the daily scale. Analysis 

of the cumulative distribution function (CDF) indicates that rainfall values in the range of 5–25 mm are 

better represented in Verification Scenario 2 (normal years only) compared to Verification Scenario 3 (dry 

years only), in which the CDF predominantly represents rainfall values in the range of 5–15 mm. 
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